Piezoelectric Crystals

From grassman, 3 Years ago, written in Plain Text, viewed 73 times.
URL https://paste.bugabuse.net/view/49482205 Embed
Download Paste or View Raw
  1. They can be made out of soda ash and cream of tartar and some water. Make thousands of kV just by hitting a crystal!
  2.  
  3. More info on Piezoelectrics -
  4. Piezoelectricity
  5. Jim Emery
  6. 4/3/97Contents
  7. 0.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
  8. 0.2  The Linear Piezoelectric Equations  . . . . . . . . . . . . . . .  3
  9. 0.3 Piezoelectric Ceramics Constants and One Dimensional Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
  10. 0.4  The Stress Form of The Piezoelectric Matrix  . . . . . . . . . .  9
  11. 0.5 Three Systems of Notation For The Piezoelectric Equations:
  12. Physics (IRE), ABAQUS, and ANSYS  . . . . . . . . . . . . .  11
  13. 0.6 Deriving the Tensor Stress Form of the Piezoelectric Equations
  14. From the Strain Form  . . . . . . . . . . . . . . . . . . . . . .  14
  15. 0.7  Orthotropic Material  . . . . . . . . . . . . . . . . . . . . . . .  16
  16. 0.8  Poling and Piezoelectric Ceramics  . . . . . . . . . . . . . . . .  18
  17. 0.9 The Equality of Direct and Converse Piezo Coefficients . . . . 20
  18. 0.10  Typical Values of Piezoelectric Parameters  . . . . . . . . . . .  21
  19. 0.11 Piezoelectric Current and Impedance From A Finite Element
  20. Calculation  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
  21. 0.12  Piezoelectric Cube Example  . . . . . . . . . . . . . . . . . . .  24
  22. 0.13  Generating Ferroelectric Hysteresis Curves  . . . . . . . . . . .  26
  23. 0.14  The Strain Hysteresis Curve  . . . . . . . . . . . . . . . . . . .  26
  24. 0.15  Relaxors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
  25. 0.16  Electrostriction  . . . . . . . . . . . . . . . . . . . . . . . . . .  27
  26. 0.17 The Conversion Program: pzansys.ftn . . . . . . . . . . . . .  27
  27. 0.18 Example: Parameter Conversion Using Compliance Components 28
  28. 0.19 Example: Parameter Conversion Using Four Independent Elasticity Components  . . . . . . . . . . . . . . . . . . . . . . . .  31
  29. 0.20  Example, Orthotropic Elastic Constants  . . . . . . . . . . . .  34
  30. 0.21 Program Listing of pzansys.ftn Program  . . . . . . . . . . .  37
  31. 0.22 Location of Piezoelectric Information In ANSYS Manuals . . . 58
  32. i0.23 ANSYS Comparison For A Composite Piezoelectric Transducer: Example VM176. . . . . . . . . . . . . . . . . . . . . .  59
  33. 0.24  Piezoelectricity Bibliography . . . . . . . . . . . . . . . . . . .  61
  34. ii0.1 Introduction
  35. We shall show how to derive the stress form of the piezoelectric equations
  36. from the strain form, and we shall show how to find the clamped permittivity
  37. matrix from the unclamped matrix. These conversions are required for finite
  38. element programs because in such programs equations are solved for the
  39. elastic displacements, and so the strains rather than the stresses are the
  40. independent variables. We shall do the basic derivation three times in the
  41. following sections. We shall first treat the one dimensional equation. In
  42. later sections we shall treat the matrix case and the full tensor case. These
  43. derivations are conceptually the same.
  44. 0.2 The Linear Piezoelectric Equations
  45. A piezoelectric ceramic is a ferroelectric material. It exhibits hysteresis and
  46. has nonlinear behavior. When this material is poled (placed in a strong
  47. electric field), it attains a permanently polarized state. For a small variation
  48. in the electric field, it behaves approximately linearly near that state.
  49. The linear piezoelectric equations are written in two different forms. In
  50. the more common form, which is called the strain form, the strain tensor εij
  51. and the electric polarization vector Pi are each written as linear functions of
  52. the electric field vector Ei and the stress tensor σij
  53. . These equations are
  54. εij = Ekdkij + c
  55.  
  56. ijkl
  57. σkl
  58. ,
  59. and
  60. Pi = 0χijEj + dijkσj k.
  61. The dijk are the components of the piezoelectric tensor (strain coefficients).
  62. The c
  63.  
  64. ijkl
  65. are the components of the inverse elastic tensor. The constant 0
  66. is the permittivity of free space. The χij are the components of the electric
  67. susceptibility tensor. In the direct piezoelectric effect, when a piezoelectric
  68. material is put under a stress, the material becomes electrically polarized
  69. and surface charges appear. The direct piezoelectric effect is
  70. Pi = dijkσj k,
  71. which is obtained from the second equation, when the external electric field
  72. is zero.
  73. 3In the converse piezoelectric effect, when a piezoelectric material is put
  74. in an external electric field (voltages applied to electrodes), the material
  75. experiences a strain. The converse piezoelectric effect is
  76. εij = Ekdkij
  77. ,
  78. which is obtained from the first equation, when there are no external forces
  79. and the stress is zero.
  80. The fact that the coefficients for both the direct effect and the converse
  81. effect are the same is a consequence of conservation of energy. This fact can
  82. be established by a thermodynamic argument (See Nye). Because of various
  83. symmetries in the tensor indices, the equations have matrix forms. Let us
  84. define an index function f : (i, j)− > k that takes a pair of indices and
  85. produces a single index. The function f takes values as follows: f(1, 1) =
  86. 1, f(2, 2) = 2, f(3, 3) = 3, f(2, 3) = 4, f(1, 3) = 5, f(1, 2) = 6 The function is
  87. symmetric, f(i, j) = f(j, i), and so f(3, 2) = 4, f(3, 1) = 5, f(2, 1) = 6. This
  88. is the Physics and The Institute of Radio Engineers assignment function. We
  89. define this function with a table:
  90. f 1 2 3
  91. 1 1 6 5
  92. 2 6 2 4
  93. 3 5 4 3
  94. This index assignment is the one most often used in elasticity theory to
  95. convert the second rank stress and strain tensors to six component vectors.
  96. Although this is the usual convention, the following assignment defined by
  97. function g is used sometimes (ABAQUS).
  98. g 1 2 3
  99. 1 1 4 5
  100. 2 4 2 6
  101. 3 5 6 3
  102. A third index function is also used. The function, which we call h is used
  103. by the finite element program ANSYS.
  104. 4h 1 2 3
  105. 1 1 4 6
  106. 2 4 2 5
  107. 3 6 5 3
  108. Warning! These differences in index assignment will change the matrices
  109. such as c, d, e.
  110. The matrix components of the piezoelectric tensor are di,f(i,j) and are
  111. either equal to the tensor component itself, when i = j, or to twice the
  112. component. This will be explained below.
  113. There is a second form of the piezoelectric equations, which is called the
  114. stress form.
  115. The stress tensor σij and the electric displacement vector Di
  116. , are each
  117. written as linear functions of the electric field vector Ei and the strain tensor
  118. εij
  119. . These equations are
  120. σij = cijklεkl − Ekekij
  121. ,
  122. and
  123. Di = eijkεj k + ijEj
  124. .
  125. The cijkl are the components of the elastic tensor. The eijk are the components of the piezoelectric tensor (stress coefficients). The ij are the components of the permittivity tensor.
  126. These equations are suitable for finite element programs because in these
  127. programs the displacements and hence the strains are the independent variables, whereas the boundary conditions are given as force loadings, that is as
  128. stresses. It will be shown below that the piezoelectric stress coefficients and
  129. the strain coefficients are related as follows:
  130. eijk = cj klmdilm.
  131. Notation varies greatly in the field of piezoelectricity. In a following
  132. section we will summarize the notation used in physics, and in two finite
  133. element programs ABAQUS and ANSYS.
  134. 50.3 Piezoelectric Ceramics Constants and One
  135. Dimensional Equations
  136. The principal references for this section are: Jaffe, Cook and Jaffe, Piezoelectric Ceramics, and the Morgan Matroc document Guide To Modern
  137. Piezoelectric Ceramics.
  138. The original research on piezoelectric materials was conducted with parallel plate capacitors, and the problem was treated as one dimensional. So
  139. the strain form of the equations considered were
  140. ε = Ed + c−1
  141. σ
  142. P = 0χE + dσ,
  143. where the quantities are in the 3 direction. From the definition of the electric
  144. displacement
  145. D = P + 0E = 0(χ + 1)E + dσ =
  146. σ
  147. E + dσ.
  148. So we have an alternate form
  149. D =
  150. σ
  151. E + dσ.
  152. Here
  153. σ
  154. is the permittivity at constant stress (unclamped).
  155. The second set of piezoelectric equations (stress form) may be obtained
  156. from the first set (strain form). Solving the first equation for the stress, we
  157. have
  158. σ = cε − cdE = cε − eE.
  159. Making this substitution for σ in the alternate form of the second equation
  160. of the first set, we get the second equation of the second set.
  161. D =
  162. σ
  163. E + d(cε − eE) = E + eε,
  164. = (
  165. σ
  166. − de)E + dcε
  167. =
  168. ε
  169. E + eε,
  170. where the piezoelectric coefficient e = cd. Here
  171. ε
  172. is the permittivity at
  173. constant stress (unclamped).
  174. 6The coefficients may be defined as partial derivatives. For example,
  175. d = (
  176. ∂ε
  177. ∂E
  178. )σ,
  179. where the subscript σ means that ε is a function of E and σ, where σ is held
  180. constant in computing the partial derivative. Similarly we have
  181. d = (
  182. ∂P
  183. ∂σ
  184. )E
  185. The constant g is defined by
  186. g = (−
  187. ∂E
  188. ∂σ
  189. )ε = (
  190. ∂ε
  191. ∂D
  192. )σ.
  193. We have
  194. E =
  195. 1
  196.  
  197. (D − dσ)
  198. so
  199. g = −(
  200. ∂E
  201. ∂σ
  202. )ε =
  203. d
  204.  
  205. .
  206. The constant e is defined by
  207. e = −(
  208. ∂σ
  209. ∂E
  210. )ε = (
  211. ∂D
  212. ∂ε
  213. )E
  214. The poled ceramic is an orthotropic material with a plane of symmetry
  215. whose normal is in the poled direction. Further it is symmetric with respect
  216. to any rotation about the poling direction. Performing a reflection through
  217. the symmetry plane, some of the strain components and stress components
  218. are maintained in sign and some others are changed in sign. Writing the
  219. various components of stress as functions of strain, in the two coordinate
  220. systems, we find that the proper signs can be maintained only if some of the
  221. elastic coefficients are zero (see pp62-64 Sokolnikoff Mathematical Theory
  222. of Elasticity). Carrying out rotation transformations about the poling axis
  223. (3 direction) we find further conditions on the elasticity coefficients. We have
  224. only the following independent elastic coefficients (Jaffe et al, p20)
  225. c11, c33, c44, c12, c13.
  226. 7We have
  227. c22 = c11, c55 = c44, c66 = 2(c11 − c12), c23 = c13.
  228. Coefficients which are not in the upper 3-dimensional submatrix or on the
  229. main diagonal are zero.
  230. The independent piezoelectric coefficients are
  231. d33, d31, d15.
  232. We have
  233. d32 = d31, d24 = d15.
  234. All other coefficients are zero.
  235. The independent dielectric coefficients are
  236. K11, K33
  237. We have
  238. K22 = K11.
  239. All other coefficients are zero.
  240. The permittivity is
  241. ij = 0Kij
  242. .
  243. The electromechanical coupling constant is defined in terms of the ratio
  244. of stored electrical to stored mechanical energy. Let Qmech be the electrical
  245. energy converted to mechanical energy and let Qinput be the electrical energy
  246. input. Then the electromechanical coupling factor is
  247. k
  248. 2
  249. =
  250. Qmech
  251. Qinput
  252. .
  253. It is claimed (Jaffe et al p7) that the relation between the unclamped dielectric constant Kσ
  254. and the clamped dielectric constant Kε
  255. is
  256. K
  257. ε
  258. = K
  259. σ
  260. (1 − k
  261. 2
  262. ).
  263. Because 0 < k  < 1, the clamped dielectric constant is smaller than the
  264. clamped constant
  265. < Kσ
  266. .
  267. 80.4 The Stress Form of The Piezoelectric Matrix
  268. Given the strain form of the piezoelectric equations, we can convert to the
  269. stress form and give expressions for the three independent e tensor parameters. In matrix form we have
  270. ε = d
  271. T
  272. E + c−1
  273. σ
  274. P = 0χE + dσ
  275. From the first equation multiplying by the elasticity matrix c we have
  276. cε = cd
  277. T
  278. E + σ,
  279. so solving for the stress matrix σ we have
  280. σ = cε − cd
  281. T
  282. E
  283. = cε − eE,
  284. where the matrix e is defined as the product of c and the transpose of d
  285. e = cd
  286. T
  287. .
  288. We have
  289. e
  290. T
  291. = (cd
  292. T
  293. )
  294. T
  295. = c
  296. T
  297. d = cd
  298. The last equality follows because c is symmetric. From the second equation
  299. D = P + 0E = 0χE + dσ + 0E
  300. = 0(χ + I)E + dσ
  301. =
  302. σ
  303. E + dσ,
  304. where
  305. σ
  306. is the permittivity at constant stress (unclamped permittivity).
  307. Substituting the expression for the stress σ from above
  308. D =
  309. σ
  310. E + d(cε − eE)
  311. = (
  312. σ
  313. − de)E + dcε
  314. 9=
  315. ε
  316. E + e
  317. T
  318. ε,
  319. where
  320.  
  321. ε
  322. =
  323. σ
  324. − de
  325. is the permittivity at constant strain (clamped permittivity). In the previous
  326. section we saw that the elastic matrix c has 5 independent parameters and
  327. d has three independent parameters. We have
  328. c =
  329. c11 c12 c13 0 0  0
  330. c12 c11 c13 0 0  0
  331. c13 c13 c33 0 0  0
  332. 0 0 0 c44 0 0
  333. 0 0 0 0 c44 0
  334. 0 0 0 0 0 2(c11 − c12)
  335. ,
  336. and
  337. d =
  338. 0 0  0 0 d15 0
  339. 0 0  0 d15 0 0
  340. d31 d31 d33 0 0 0
  341.  .
  342. Then the piezoelectric stress matrix is
  343. e = cd
  344. T
  345. =
  346. c11 c12 c13 0 0  0
  347. c12 c11 c13 0 0  0
  348. c13 c13 c33 0 0  0
  349. 0 0 0 c44 0 0
  350. 0 0 0 0 c44 0
  351. 0 0 0 0 0 2(c11 − c12)
  352. 0 0 d31
  353. 0 0 d31
  354. 0 0 d33
  355. 0 d15 0
  356. d15 0 0
  357. 0 0 0
  358. =
  359. 0 0 c11d31 + c12d31 + c13d33
  360. 0 0 c12d31 + c11d31 + c13d33
  361. 0 0 c13d31 + c13d31 + c33d33
  362. 0 c44d15 0
  363. c44d15 0 0
  364. 0 0  0
  365. 10=
  366. 0 0 e13
  367. 0 0 e13
  368. 0 0 e33
  369. 0 e42 0
  370. e42 0 0
  371. 0 0 0
  372. So the three independent piezo e parameters are e13, e33, e42. (Warning! The
  373. e matrix is sometimes defined as the transpose of this e matrix.)
  374. Explicitly we have
  375. e13 = (c11 + c12)d31 + c13d33
  376. e33 = (c13 + c13)d31 + c33d33
  377. and
  378. e42 = c44d15.
  379. These equations are easily solved for d33, d31 and d15 in terms of the three
  380. independent e and five independent c coefficients.
  381. 0.5 Three Systems of Notation For The Piezoelectric Equations: Physics (IRE), ABAQUS,
  382. and ANSYS
  383. The index function f(ij), which maps two indices to one, in the way that
  384. is conventional in elasticity theory, was defined in the previous section, as
  385. was g(ij). Here is a table showing the notation most commonly used in
  386. physics (References, Nye, Auld, Cady, IRE (The Institute of Radio Engineers Standard) ANSYS Procedures p8-15, ), and in the finite element systems ABAQUS (Reference: Theory manual, section 3.10.1), and ANSYS
  387. (Reference: Theory manual, Piezoelectrics chapter).
  388. 11Vari abl e Physics ABAQUS ANSYS
  389. Electric Field Vector Ei Ei Ei
  390. Electric Polarization Vector Pi Pi Pi
  391. Electric Displacement Vector Di
  392. qi Di
  393. Stress Tensor σij σij σij
  394. Stress Vector σk = σf(ij)
  395. - Tk
  396. Strain Tensor εij εij
  397. -
  398. Strain Vector εk - Sk
  399. Electric Permittivity Tensor ij D
  400. φ
  401. ij
  402. ij
  403. Electric Susceptibility Tensor χij
  404. - -
  405. Elasticity Tensor cijkl Dijkl
  406. cijkl
  407. Elasticity Matrix cmn = cf(ij)f(kl) − cmn
  408. Inverse Elasticity Tensor c
  409.  
  410. ijkl
  411. - c
  412.  
  413. ijkl
  414. Piezoelectric Tensor (strain) di,jk d
  415. φ
  416. i,jk
  417. di,jk
  418. Piezoelectric Matrix (strain) di,m = di,f(j k) di,m = di,g(j k) di,m
  419. Piezoelectric Tensor (stress) ei,jk e
  420. φ
  421. i,jk
  422. ej k,i
  423. Piezoelectric Matrix (stress) ei,m = ei,f(j k)
  424. ei,m = ei,g(j k)
  425. em,i
  426. The engineering strain coefficients are written as γij
  427. . They differ from
  428. the εij
  429. , in that the shear coefficients are doubled in value.
  430. Note: the physics notation for eijk is defined in equation 8.40 of Auld. Nye
  431. does not introduce the piezoelectric e coefficients. The Cady book is very
  432. old and one can obtain piezoelectric constant notation only by implication.
  433. Note: The ANSYS definition of the e matrix and tensor is the transpose of
  434. the physics and ABAQUS definition. Thus the ANSYS e matrix is 6 by 3,
  435. whereas the physics e matrix is 3 by  6.
  436. The two ABAQUS tensor equations are:
  437. σij = Dijklεkl − e
  438. φ
  439. mijEm
  440. (or alternately: σij = Dijklεkl − Dijkld
  441. φ
  442. mkl
  443. Em)
  444. qi = e
  445. φ
  446. ijk + D
  447. φ
  448. ijEj
  449. .
  450. The ANSYS matrix equations are:
  451. T = cS − eE
  452. D = e
  453. T
  454. S + E.
  455. 12The Physics matrix equations are:
  456. σ = cε − e
  457. T
  458. E,
  459. D = eε + E.
  460. Again note that the ANSYS e definition and the physics e definition are
  461. transposes of one another.
  462. Here are the ANSYS matrices written out:
  463. T = σ =
  464. σ1
  465. σ2
  466. ...
  467. σ6
  468. S = ε =
  469. ε1
  470. ε2
  471. ...
  472. ε6
  473. E =
  474. E1
  475. E2
  476. E3
  477. D =
  478. D1
  479. D2
  480. D3
  481. c =
  482. c11 c12 c13 0 0 0
  483. c21 c22 c23 0 0 0
  484. c31 c32 c33 0 0 0
  485. 0 0  0 c44 0 0
  486. 0 0 0 0 c55 0
  487. 0 0 0 0 0 c66
  488. 13e =
  489. e11 e12 e13
  490. e21 e22 e23
  491. e31 e32 e33
  492. e41 e42 e43
  493. e51 e52 e53
  494. e61 e62 e63
  495.  =
  496. 11 0 0
  497. 0 22 0
  498. 0 0 22
  499. We will show in the next section that (physics notation)
  500. eijk = cj klmdilm.
  501. 0.6 Deriving the Tensor Stress Form of the
  502. Piezoelectric Equations From the Strain
  503. Form
  504. We have already done this derivation in a previous section for the matrix
  505. forms of the piezoelectric equations. Here we will repeat this for the tensor
  506. forms of the equations. We start with the strain form of the piezoelectric
  507. equations
  508. εij = Ekdkij + c
  509.  
  510. ijkl
  511. σkl
  512. ,
  513. and
  514. Pi = 0χijEj + dijkσj k.
  515. Let cpqij be the elasticity tensor. Because c
  516.  
  517. is its inverse, we have
  518. cpqij
  519. c
  520.  
  521. ijkl = δ
  522. p
  523. k
  524. δ
  525. q
  526. l
  527. .
  528. Then multiplying the first equation by cpqij and summing we get
  529. cpqijεij = cpqijEkdkij + cpqij
  530. c
  531.  
  532. ijkl
  533. σkl
  534. ,
  535. 14which becomes
  536. cpqijεij = cpqijEkdkij + σpq.
  537. We let
  538. ekpq = cpqijdkij
  539. .
  540. Then
  541. σpq = cpqrsεrs − empqEm.
  542. The equation relating electric displacement D, electric polarization P, and
  543. the macro electric field E is
  544. Di = Pi + 0Ei
  545. .
  546. Substituting for the polarization from the second piezoelectric equation above,
  547. we have
  548. Di = 0χijEj + dijkσj k + 0Ei
  549. .
  550. We write this as
  551. Di = 0(χij + δij
  552. )Ej + dijkσj k
  553. =
  554. σ
  555. ijEj + dipqσpq,
  556. where
  557. σ
  558. ij
  559. is the zero stress (unclamped ) permittivity. Substituting our previously derived expression for the stress, we get
  560. Di =
  561. σ
  562. imEm + dipq(cpqrsεrs − empqEm)
  563. = (
  564. σ
  565. im − dipqempq)Em + dipqcpqrsεrs
  566. = eirsεrs +
  567. ε
  568. imEm,
  569. where
  570.  
  571. ε
  572. im =
  573. σ
  574. im − dipqempq
  575. is the zero strain (clamped) permittivity. We have assumed that cpqrs = crspq.
  576. This is the case when the internal energy of the material is a function of the
  577. values σ, ε, D, and E, and not dependent on the path through which the
  578. state was reached, that is,when the internal energy is an exact differential in
  579. the thermodynamic sense. Therefore redefining the dummy indices, we have
  580. the stress version of the piezoelectric equations:
  581. σij = cijklεkl − Ekekij
  582. ,
  583. 15and
  584. Di = eijkεj k +
  585. ε
  586. ij
  587. Ej
  588. .
  589. The matrix forms of these equations are:
  590. σ = cε − e
  591. T
  592. E,
  593. D = eε +
  594. ε
  595. E.
  596. 0.7 Orthotropic Material
  597. For the basic equations of elasticity, see Jim Emery Elasticity, (See files:
  598. elastic.tex, elastic.ps).
  599. An orthotropic problem is one in which the material properties are symmetric with respect to 3 mutually orthogonal planes (See Sokolnikoff p62). A
  600. piezoelectric ceramic such as PZT is orthotropic, but has even more symmetry. It is invariant to any rotation about the poled axis. By applying various
  601. symmetry transformations, and invariance properties, one finds that many
  602. of the elastic constants must be zero. The elastic matrix becomes
  603. c =
  604. c11 c12 c13 0 0 0
  605. c21 c22 c23 0 0 0
  606. c31 c32 c33 0 0 0
  607. 0 0 0 c44 0 0
  608. 0 0 0 0 c55 0
  609. 0 0 0 0 0 c66
  610. .
  611. The inverse matrix is
  612. c
  613.  
  614. = c−1
  615. =
  616. 1/E1 −ν21/E2 −ν31/E3 0 0  0
  617. −ν12/E1 1/E2 −ν32/E3 0 0  0
  618. −ν13/E1 −ν23/E2 1/E3 0 0  0
  619. 0 0 0 1/(2µ32) 0  0
  620. 0 0 0 0 1/(2µ31) 0
  621. 0 0 0 0 0 1/(2µ12)
  622. .
  623. The Poisson ratio, νij
  624. , is the ratio of the negative of the strain in the
  625. xj direction, to the strain in the xi direction, for a normal stress in the xi
  626. direction. For example, if the only nonzero stress component is σ1, then
  627. 16
  628. 1/E1 −ν21/E2 −ν31/E3 0 0 0
  629. −ν12/E1 1/E2 −ν32/E3 0 0 0
  630. −ν13/E1 −ν23/E2 1/E3 0 0 0
  631. 0 0 0 1/(2µ32) 0  0
  632. 0 0 0 0 1/(2µ31) 0
  633. 0 0 0 0 0 1/(2µ12)
  634. σ1
  635. 0
  636. 0
  637. 0
  638. 0
  639. 0
  640. =
  641. σ1/E1
  642. (−σ1ν12)/E1
  643. (−σ1ν13)/E1
  644. 0
  645. 0
  646. 0
  647. =
  648. ε1
  649. ε2
  650. ε3
  651. 0
  652. 0
  653. 0
  654. .
  655. So that
  656. ν12 =
  657. −ε2
  658. ε1
  659. ,
  660. and
  661. ν13 =
  662. −ε3
  663. ε1
  664. ,
  665. By the symmetry of c, we have
  666. νij/Ei = νj i/Ej
  667. .
  668. So there are three independent values of Poisson’s ratio. We can take these
  669. to be
  670. ν12, ν13, ν23,
  671. or
  672. ν21, ν31, ν32.
  673. 17For the case of poled piezoelectric ceramics poled in the 3 direction, the best
  674. choice is
  675. ν21, ν31, ν32.
  676. It is clear that in that case
  677. ν31 = ν32,
  678. so that there are only two independent poisson ratio’s, which we may take
  679. as
  680. ν21, ν31.
  681. Also we see that ν31 is the poisson ratio stated for piezoceramics and is said
  682. to be about
  683. .31
  684. If the engineering strain vector is used then the shear strains are twice the
  685. physics shear strains, so that the 2 multiplying a shear modulus is suppressed.
  686. The engineering shear strain is equal to the shear angle, the physics shear
  687. strain is equal to one half the angle.
  688. The notation for shear modulus µij depends upon which of the index
  689. mappings f or g is used in assigning the stress-strain tensor indices to the
  690. vector indices.
  691. 0.8 Poling and Piezoelectric Ceramics
  692. See:
  693. Newnham R E, Trolier-McKinstry S,Giniewicz J R
  694. Piezoelectric, Pyroelectric and Ferroic Crystals
  695. J. Material Education, 15, 189-223 (1993),
  696. (reprint: Penn State MRL annual report to ONR 1994, Appendix 1)
  697. For the nature of the strain vs electric field curve, the nature of domains
  698. in PZT, and the morphotropic phase boundary between tetragonal PbTiO3
  699. and rhombohedral PbZrO3 ferroelectric phases, see:
  700. Subbarao E C, Srikanth V,Cao W, Cross L E
  701. Domain Switching And Microcracking During
  702. Poling Of Lead Zirconate Titonate Ceramics
  703. 18Ferroelectrics 1993 V 145 pp. 271-281
  704. (reprinted: Materials For
  705. Adaptive Structural Acoustic Control, Office
  706. Of Navel Research, Penn State Materials
  707. Research Laboratory, L. Eric Cross ed, V1 1994, appendix 15).
  708. The morphrotropic phase boundary is the boundary between two different structures of the piezoelectric material. We note that “morph” is a
  709. root meaning form, and “trop” is a root meaning to turn or change. Hence
  710. morphotropic means: a change in form.
  711. Consider the equation
  712. Pi = dijσj
  713. .
  714. Let the poling direction be the z axis. Then the domains will be randomly
  715. directed in the xy plane. Hence the ceramic will be orthotropic relative to
  716. the xy plane. Because of this symmetry, the piezoelectric matrix takes the
  717. form (see Jaffe, Cook, Jaffe Piezoelectric Ceramics, p20)
  718. d =
  719. 0 0  0 0 d15 0
  720. 0 0  0 d24 0 0
  721. d31 d32 d33 0 0 0
  722.  .
  723. =
  724. 0 0  0 0 d15 0
  725. 0 0  0 d15 0 0
  726. d31 d31 d33 0 0 0
  727.  .
  728. The elasticity tensor takes the form
  729. c =
  730. c11 c12 c13 0 0  0
  731. c12 c22 c13 0 0  0
  732. c13 c13 c33 0 0  0
  733. 0 0 0 c44 0 0
  734. 0 0 0 0 c44 0
  735. 0 0 0 0 0 2(c11 − c12)
  736. .
  737. The dielectric tensor is 
  738. K1 0 0
  739. 0 K1 0
  740. 0 0 K3
  741.  .
  742. 19Suppose we have d31 = d32, d33, d15 = d24,and dij = 0,  otherwise.  Then  we
  743. have
  744. d311 = d31,
  745. d322 = d32,
  746. d333 = d33,
  747. d113 = d15/2,
  748. d131 = d15/2,
  749. d223 = d24/2,
  750. d232 = d24/2,
  751. and dijk = 0  otherwise.
  752. 0.9 The Equality of Direct and Converse Piezo
  753. Coefficients
  754. This equality may be shown by applying the first and second laws of thermodynamics. Let the stress coefficients σij
  755. , the electric field components Ei and
  756. the temperature T be the state variables. Then write differential expressions
  757. for the strain deij
  758. , the electric displacement dDi
  759. , and the entropy dS. Write
  760. the internal energy change as
  761. dU = σijdeij + EidDi + T dS.
  762. Introduce the function
  763. Φ = U − σij eij − EiDi − T S.
  764. Compute the differential of Φ using the last two equations, and also write it
  765. in the general partial derivative form. Then equate the partial derivatives to
  766. coefficients of the equations. For example
  767. ∂Φ
  768. ∂Ei
  769. = −Di
  770. .
  771. Differentiate to equate derivatives of eij
  772. , Di
  773. , or S to second order partial
  774. derivatives of Φ. This shows for example that the coefficients in the direct
  775. piezoelectric effect are equal to the coefficients of the converse piezoelectric
  776. effect. See Nye p179.
  777. 200.10 Typical Values of Piezoelectric Parameters
  778. Dielectric constant
  779. K = 200 =
  780.  
  781. 0
  782. 0 = 8.85 × 10
  783. −12
  784. farad/meter.
  785. KT
  786. dielectric constant at constant stress. KS
  787. dielectric constant at zero
  788. strain (constrained piezoelectric coefficient)
  789. d33 = 200 × 10−12
  790. coulomb/newton (or meter/volt).
  791. d31 = −100 × 10−12
  792. coulomb/newton (or meter/volt).
  793. d15 = 400 × 10−12
  794. coulomb/newton (or meter/volt).
  795. gij voltage coefficients.
  796. kij = gij
  797. Poisson’s ratio is approximately .31 for all ceramics. Curie temperature
  798. Tc = 300.
  799. fr = resonant frequency. Typical value is 70 kHz.
  800. Panasonic motor.
  801. Operating voltage 22 volts.
  802. Rated output 1 watt.
  803. Torque 250 gf.cm (gf gram force)
  804. 250 gf cm (pound/454 gf)(inch/2.54 cm)(16 ounce/pound) = 3.47 inch.ounce
  805. Current .4 amp at 5 to 10 volts
  806. Input power 2 to 4 watts
  807. Voltage of control circuit 12 volts
  808. 250 g.cm (kg/1000 g)(9.8 m/s.s)(m/100 cm) = .0245 N.m
  809. Angular velocity = 4002π/(min)(min/60sec) =  10.47(1/s)
  810. Power = (.0245)(10.47) = .2565 watt
  811. Speed 400 rpm, noload 600 rpm.
  812. fa = antiresonant frequency (parallel resonance)
  813. Electromagnetic coupling constant
  814. k = (electrical energy stored)/(mechanical energy stored).
  815. 21kp = .2 to .8 = planar coupling factor of a thin disk.
  816. Qm = quality factor.
  817. Example: Thickness
  818. l = .030inches = 7.63 × 10−4
  819. m
  820. v = 400volts.
  821. E = v/l = 3.67 × 10
  822. 6
  823. v/m.
  824. e = dE = (200 × 10−12
  825. )(3.67 × 10
  826. 6
  827. ) = 7.34 × 10−4
  828. .
  829. ∆z = el = 22µinches
  830. 0.11 Piezoelectric Current and Impedance From
  831. A Finite Element Calculation
  832. Let D be the electric displacement and ρ the charge  density.  We can  use one
  833. of Maxwell’s equations
  834. ∇ · D = ρ,
  835. to show that the surface charge density on a conductor equals the normal
  836. component Dn of D outside of the conductor. We enclose a conducting
  837. surface with a thin pillbox of area A, volume V , and thickness ∆t. The
  838. charge contained in the volume is Aτ where τ is the surface charge density.
  839. Then letting ∆t go to zero, we have
  840. Aτ =
  841.  
  842. V
  843. ρdV =
  844.  
  845. V
  846. ∇ · DdV =
  847.  
  848. ∂ V
  849. D · nds → D · nA.
  850. Then the charge density is
  851. τ = D · n = Dn.
  852. We compute the nodal strains εij
  853. from the nodal displacements ui at a
  854. face of an element.
  855. From the finite element nodal potentials φn, we compute derivatives of
  856. the shape functions, and then the gradient of the potential. Then we obtain
  857. the electric field Ei as the negative gradient of the potential,
  858. E = −∇φ.
  859. 22We compute the electric displacement from the piezoelectric equation
  860. Di = eijkεj k + KijEj
  861. .
  862. Then we compute the normal component Dn. This gives the surface charge
  863. density. Multiplying by the area A, we get the charge q. We sum up the
  864. charges on the boundaries of the elements to get the total electrode charge.
  865. If we calculate the charge as a function of time, we can fit it to a function
  866. Q0 cos(ωt + ψ),
  867. and thus to the real part of the exponential
  868. Q0 exp(j(ωt + ψ)).
  869. Differentiating with respect to time we get the current
  870. I = I0 exp(j(ωt + ψ)).
  871. Then if V is the applied voltage, the impedance is
  872. Z = V /I .
  873. We can also compute energy storage and dissipation in the finite element
  874. model, and relate it to energy storage and dissipation in an equivalent circuit.
  875. We can obtain or compute the energy density of the electric field
  876. D · E
  877. 2
  878. ,
  879. the elastic strain energy, the kinetic energy, heat dissipation, and frictional
  880. contact energy. The kinetic energy will correspond to inductor energy in
  881. the equivalent circuit, the strain energy and the electric field energy will
  882. correspond to capacitive energy, and the dissipation energy will correspond
  883. to a resistance loss. If the energies correspond, then the equivalent circuit is
  884. valid.
  885. 230.12 Piezoelectric Cube Example
  886. Consider a piezoelectric cube of side a. Let thin metal plates be located at
  887. z = 0  and z = a. Let there be a voltage V on these plates. Let there be a
  888. horizontal compressive forces F in the y direction acting on the y = 0,  and
  889. the y = a faces of the block. The electric field is
  890. E =
  891. E1
  892. E2
  893. E3
  894.  =
  895. 0
  896. 0
  897. V /a
  898. The stress is
  899. σ =
  900. σ1
  901. σ2
  902. σ3
  903. σ4
  904. σ5
  905. σ6
  906. =
  907. F /a
  908. 2
  909. 0
  910. 0
  911. 0
  912. 0
  913. 0
  914. .
  915. An average dielectric constant for PZT is
  916. K = 200 =
  917.  
  918. o
  919. = 1 + χ.
  920. We have
  921. 0 = 8.85 × 10
  922. 10
  923. (C
  924. 2
  925. /N M2
  926. ).
  927. Then the permittivity is
  928.  = 1.77 × 10−9
  929. .
  930. If we take the material to be isotropic, the polarization equation becomes
  931. P = 0χE +
  932. 0 0 0 0 d15 0
  933. 0 0 0 0 d25 0
  934. d31 d32 d33 0 0  0
  935. σ1
  936. σ2
  937. σ3
  938. σ4
  939. σ5
  940. σ6
  941. We have
  942. d31 = d32 = −100 × 10−12
  943. C/N or M/V
  944. 24d33 = 2100 × 10−12
  945. d51 = d15 = 400 × 10−12
  946. Because only σ1 is nonzero, we have
  947. P = 0χE +
  948. 0
  949. 0
  950. d31σ1
  951.  .
  952. Then
  953. P3 = 0χE3 + d31σ1
  954. D = 0E + P.
  955. D3 = 0(1 + χ)E3 + d31σ1 = 0K E3 + d31σ1.
  956. The surface charge on the z = a face is
  957. Q = D3a
  958. 2
  959. .
  960. The strain is
  961. e =
  962. 0 0 d31
  963. 0 0 d32
  964. 0 0 d33
  965. 0 d25 0
  966. d15 0 0
  967. 0 0 0
  968. E1
  969. E2
  970. E3
  971.  +
  972. c11 c12 c13 0 0 0
  973. c21 c22 c33 0 0 0
  974. c31 c32 c33 0 0 0
  975. 0 0 0 c44 0 0
  976. 0 0 0 0 c55 0
  977. 0 0 0 0 0 c66
  978. σ1
  979. σ2
  980. σ3
  981. σ4
  982. σ5
  983. σ6
  984. So the nonzero elements of the strain are
  985. e1 = d31E3 + σ1c11 = d31E3 +
  986. σ1
  987. ξ
  988. ,
  989. e2 = d32E3 + σ1c21 = d32E3 −
  990. σ1ν
  991. ξ
  992. ,
  993. e3 = d33E3 + σ1c31 = d33E3 −
  994. σ1ν
  995. ξ
  996. ,
  997. where ξ is Young’s modulus, and ν is Poisson’s ratio.
  998. 250.13 Generating Ferroelectric Hysteresis Curves
  999. Suppose we arrange two capacitors in series, one C1 containing a ferroelectric
  1000. dielectric, and the second C2 a nonferroelectric dielectric. Let us connect in
  1001. series an alternating high voltage source. Let V1 be the voltage across capacitor C1. This is a measure of the E field in the ferroelectric capacitor C1. The
  1002. charge on the plates of C1 is proportional to the D field (actually the D field
  1003. is equal to the surface charge density). But the charge on C1 is equal to the
  1004. charge on C2 and moves from C1 to C2 and back again during a cycle of the
  1005. applied alternating voltage. But the second capacitor is nonferroelectric and
  1006. its dielectric is linear, so that the voltage V2 across the second capacitor is
  1007. proportional to charge and hence to the D field of the ferroelectric capacitor.
  1008. Therefore, if we connect V1 across the horizontal plates of an oscilloscope,
  1009. and V2 across the vertical plates, we will see the hysteresis curve. The polarization field will be approximately equal to D, since the permittivity  for
  1010. the ferroelectric is much larger than the permittivity of free space 0.
  1011. (I think this is close to the method given by Sawyer and Tower, see
  1012. bibliography.)
  1013. 0.14 The Strain Hysteresis Curve
  1014. The strain vs electric field curve for a piezoelectric ceramic is a butterfly
  1015. curve with the strain always of one sign, and the curve lying in the positive
  1016. upper half plane.
  1017. 0.15 Relaxors
  1018. A relaxor ferroelectric has some of the properties of a normal ferroelectric,
  1019. but is not so permanently polarized and has a very narrow hysteresis loop.
  1020. When the field is removed, the material almost returns to an unpolarized
  1021. state. It requires a bias field.
  1022. See:
  1023. Cross L Eric
  1024. Relaxor Ferroelectrics: An Overview
  1025. Ferroelectrics, 1994 v151 pp. 305-320
  1026. 26(reprinted: annual report 1994 from MRL at Penn State to ONR v1 p305)
  1027. 0.16 Electrostriction
  1028. Electrostriction is an internal stress caused by the force of the electric field on
  1029. charges. It occurs in all materials, not just piezoelectric ones. A computation
  1030. shows it to be related to the gradient of the dielectric constant, and in practice
  1031. the stress is proportional to the square of the electric field intensity. It is very
  1032. hard to measure, since the force can be masked by the force due to the free
  1033. charges on the capacitor plates.
  1034. Notes and references to electrostriction: Wert, Thomson Physics of
  1035. Solids, p. 321. Julius Adams Stratton, Electromagnetic Theory, pp149-
  1036. 151. Panofsky and Philips Classical Electricity and Magnetism p.95,
  1037. As a term of an equation. Maxwell stress tensor. Classical derivation. The
  1038. treatment in Panofsky and Phillips is based on the treatment in Becker:
  1039. (formerly called Becker and Abraham) Electromagnetic Fields and Interactions p. 134. In Jaffe: Piezoelectric Ceramics, Electrostriction is
  1040. mentioned on pages 15 and 78. He relates electrostriction to domain reversal. Jaffe says that the effect is significant only for ferroelectrics above the
  1041. Curie point. Cady: Piezoelectricity defines electrostriction to be that effect that is proportional to E
  1042. 2
  1043. . See pages 4, 198, 199, 614. Cady states
  1044. that electrostriction is only significant for fields above 20,000 volts per cm.
  1045. See also Auld, Acoustic Fields and Waves in Solids, volumes I and II,
  1046. who presents a nice one dimensional model of the piezoelectric effect on p265.
  1047. 0.17 The Conversion Program: pzansys.ftn
  1048. This program does the conversion calculations derived in the previous sections. It requires as input the d parameters, and either the elasticity matrix,
  1049. or its inverse. It computes the e parameters, and computes the clamped
  1050. permittivity (strain constant) from the unclamped permittivity. It generates
  1051. material property cards for the ANSYS program. We list the program in a
  1052. later section. The next sections illustrate the operation of the program.
  1053. 270.18 Example: Parameter Conversion Using
  1054. Compliance Components
  1055. yonada:/users/u51195 $ pzansys
  1056. Reference: Jim Emery "Piezoelectricity",
  1057. Document location:/u51195/ps/piezoelc.ps,piezoelc.tex
  1058. Anonymous FTP: ftp.os.kcp.com /pub/emery/
  1059. Units are metric: Newton, Meter, Kilogram
  1060. stress: Newton/M^2 (Pascals)
  1061. Young’s Modulus: Pascals
  1062. Elasticity coefficients: Pascals
  1063. Enter piezoelectric d constants (coulomb/newton)
  1064. The IRE convention for piezoelectric labeling is used
  1065. Type <return> for default value
  1066. Enter d33 [ 2.0000000000000001E-10]
  1067. Enter d31 [ -1.0000000000000000E-10]
  1068. Enter d15 [ 4.0000000000000001E-10]
  1069. d matrix=
  1070. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4000E-09 0.0000E+00
  1071. 0.0000E+00 0.0000E+00 0.0000E+00 0.4000E-09 0.0000E+00 0.0000E+00
  1072. -0.1000E-09 -0.1000E-09 0.2000E-09 0.0000E+00 0.0000E+00 0.0000E+00
  1073. Do you want to see the nonzero components
  1074. of the 27 d tensor components? [n]
  1075. Define the elasticity matrix or compliance matrix:
  1076. (1)Use elastic constants to define compliance
  1077. for orthotropic material, using Young’s moduli,
  1078. Poissons ratios, and Shear Moduli.
  1079. (2)Use the five components of the elastic matrix
  1080. c11,c33,c44 (c44 is ANSYS c66),c12,c13,
  1081. for a z-poled ceramic.
  1082. (Note: c22=c11, c55=c44, c66=2(c11-c12),c23=c13,
  1083. and c_{23}=c_{13}. Coefficients which are
  1084. not in the upper 3-dimensional submatrix,
  1085. not on the main diagonal, are zero.
  1086. (3)Use the five components of the compliance matrix
  1087. s11,s33,s44 (s44 is ANSYS s66),s12,s13,
  1088. for a z-poled ceramic.
  1089. (Note: s22=s11, s55=s44, s66=2(s11-s12),s23=s13,
  1090. and s_{23}=s_{13}. Coefficients which are
  1091. not in the upper 3-dimensional submatrix,
  1092. not on the main diagonal, are zero.
  1093. type <return> for default selection: [1]
  1094. Enter the orthotropic elastic constants
  1095. for a coordinate system in the principle directions
  1096. Enter Young’s Modulus, in x [ 0.12800E+12]
  1097. 28Enter Young’s Modulus, in y [ 0.12800E+12]
  1098. Enter Young’s Modulus, in z [ 0.11000E+12]
  1099. Enter ANSYS Poisson ratios (Theory sec. 2.1)
  1100. Enter Major Poisson ratio prxy[ 0.30000 ]
  1101. Enter Major Poisson ratio prxz[ 0.41976 ]
  1102. Enter Major Poisson ratio pryz[ 0.41976 ]
  1103. Enter shear modulus g23 [ 0.52000E+11]
  1104. Enter shear modulus g13 [ 0.52000E+11]
  1105. Enter shear modulus g12 [ 0.12200E+12]
  1106. Compliance matrix (elasticity inverse) cinv=
  1107. 0.7813E-11 -0.2344E-11 -0.3279E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1108. -0.2344E-11 0.7813E-11 -0.3279E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1109. -0.3279E-11 -0.3279E-11 0.9091E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1110. 0.0000E+00 0.0000E+00 0.0000E+00 0.1923E-10 0.0000E+00 0.0000E+00
  1111. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1923E-10 0.0000E+00
  1112. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.8197E-11
  1113. Note: In ANSYS components 4,5,6 are permuted
  1114. (A different mapping from tensor to vector is used):
  1115. ANSYS 44 is 66
  1116. ANSYS 55 is 44
  1117. ANSYS 66 is 55
  1118. The five independent compliance coeficients are:
  1119. s11= 0.78125000E-11
  1120. s33= 0.90909091E-11
  1121. s44= 0.19230769E-10
  1122. s12=-0.23437500E-11
  1123. s13=-0.32793388E-11
  1124. Computing inverse matrix
  1125. Elasticity matrix =
  1126. 0.2104E+12 0.1119E+12 0.1163E+12 0.0000E+00 0.0000E+00 0.0000E+00
  1127. 0.1119E+12 0.2104E+12 0.1163E+12 0.0000E+00 0.0000E+00 0.0000E+00
  1128. 0.1163E+12 0.1163E+12 0.1939E+12 0.0000E+00 0.0000E+00 0.0000E+00
  1129. 0.0000E+00 0.0000E+00 0.0000E+00 0.5200E+11 0.0000E+00 0.0000E+00
  1130. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.5200E+11 0.0000E+00
  1131. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1220E+12
  1132. Orthotropic constants from compliance matrix:
  1133. Young’s Modulus 1= 0.12800000E+12
  1134. Young’s Modulus 2= 0.12800000E+12
  1135. Young’s Modulus 3= 0.11000000E+12
  1136. Major Poisson ratio prxy= 0.30000000
  1137. Major Poisson ratio prxz= 0.41975537
  1138. Major Poisson ratio pryz= 0.41975537
  1139. Shear Modulus g23= 0.52000000E+11
  1140. Shear Modulus g13= 0.52000000E+11
  1141. Shear Modulus g12= 0.12200000E+12
  1142. 29Do you want to see the nonzero components
  1143. of the 81 elasticity tensor components of c? [n]
  1144. piezoelectric (stress) tensor coefficients
  1145. Do you want to see the nonzero components
  1146. of the 27 piezoelectric tensor components of e? [n]
  1147. Piezoelectric e matrix=
  1148. 0.0000E+00 0.0000E+00 -8.977
  1149. 0.0000E+00 0.0000E+00 -8.977
  1150. 0.0000E+00 0.0000E+00 15.52
  1151. 0.0000E+00 20.80 0.0000E+00
  1152. 20.80 0.0000E+00 0.0000E+00
  1153. 0.0000E+00 0.0000E+00 0.0000E+00
  1154. Second calculation:
  1155. e13= -8.977066554171117
  1156. e33= 15.52345455897376
  1157. e42= 20.80000000000000
  1158. Note: ANSYS e rows are permuted
  1159. ANSYS row 4 is row 6
  1160. ANSYS row 5 is row 4
  1161. ANSYS row 6 is row 5
  1162. ANSYS Piezoelectric e matrix=
  1163. 0.0000E+00 0.0000E+00 -8.977
  1164. 0.0000E+00 0.0000E+00 -8.977
  1165. 0.0000E+00 0.0000E+00 15.52
  1166. 0.0000E+00 0.0000E+00 0.0000E+00
  1167. 0.0000E+00 20.80 0.0000E+00
  1168. 20.80 0.0000E+00 0.0000E+00
  1169. d times e =
  1170. 0.8320E-08 0.0000E+00 0.0000E+00
  1171. 0.0000E+00 0.8320E-08 0.0000E+00
  1172. 0.0000E+00 0.0000E+00 0.4900E-08
  1173. Enter the unclamped dielectric constant K11
  1174. [ 1300.0000 ]
  1175. Enter the unclamped dielectric constant K33
  1176. [ 1000.0000 ]
  1177. Unclamped electric permitivity tensor=
  1178. 0.1151E-07 0.0000E+00 0.0000E+00
  1179. 0.0000E+00 0.1151E-07 0.0000E+00
  1180. 0.0000E+00 0.0000E+00 0.8850E-08
  1181. Clamped electric permitivity tensor=
  1182. 0.3185E-08 0.0000E+00 0.0000E+00
  1183. 0.0000E+00 0.3185E-08 0.0000E+00
  1184. 0.0000E+00 0.0000E+00 0.3950E-08
  1185. Enter density Kg/m^3 [7500]
  1186. /COM
  1187. /COM Material properties
  1188. /COM Young’s Moduli
  1189. EX, 2, 0.12800000E+12
  1190. EY, 2, 0.12800000E+12
  1191. EZ, 2, 0.11000000E+12
  1192. 30/COM ANSYS "Major" Poisson ratios
  1193. PRXY, 2, 0.30000000
  1194. PRXZ, 2, 0.41975537
  1195. PRYZ, 2, 0.41975537
  1196. /COM Density Kg/m^3
  1197. /COM DENS, 2, 0.75000000E-02
  1198. /COM clamped Permitivities
  1199. MP,PERX, 2, 0.31850000E-08
  1200. MP,PERY, 2, 0.31850000E-08
  1201. MP,PERZ, 2, 0.39498958E-08
  1202. /COM ANSYS Piezoelectric "e" matrix
  1203. TB,PIEZ,3
  1204. TBDATA, 3, -8.9770666
  1205. TBDATA, 6, -8.9770666
  1206. TBDATA, 9, 15.523455
  1207. TBDATA, 14, 20.800000
  1208. TBDATA, 16, 20.800000
  1209. 0.19 Example: Parameter Conversion Using
  1210. Four Independent Elasticity Components
  1211. yonada:/users/u51195 $ pzansys
  1212. Reference: Jim Emery "Piezoelectricity", (piezoelc.ps)
  1213. Document location:/u51195/ps/piezoelc.ps,piezoelc.tex
  1214. Anonymous FTP: ftp.os.kcp.com /pub/emery/
  1215. Units are metric: Newton, Meter, Kilogram
  1216. stress: Newton/M^2 (Pascals)
  1217. Young’s Modulus: Pascals
  1218. Elasticity coefficients: Pascals, and so on)
  1219. Enter piezoelectric d constants (coulomb/newton)
  1220. The IRE convention for piezoelectric labeling is used
  1221. Type <return> for default value
  1222. Enter d33 [ 2.0000000000000001E-10]
  1223. Enter d31 [ -1.0000000000000000E-10]
  1224. Enter d15 [ 4.0000000000000001E-10]
  1225. d matrix=
  1226. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4000E-09 0.0000E+00
  1227. 0.0000E+00 0.0000E+00 0.0000E+00 0.4000E-09 0.0000E+00 0.0000E+00
  1228. -0.1000E-09 -0.1000E-09 0.2000E-09 0.0000E+00 0.0000E+00 0.0000E+00
  1229. Do you want to see the nonzero components
  1230. of the 27 d tensor components? [n]
  1231. Define the elasticity matrix or compliance matrix:
  1232. (1)Use elastic constants to define compliance
  1233. for orthotropic material, using Young’s moduli,
  1234. Poissons ratios, and Shear Moduli.
  1235. (2)Use the five components of the elastic matrix
  1236. 31c11,c33,c44 (c44 is ANSYS c66),c12,c13,
  1237. for a z-poled ceramic.
  1238. (Note: c22=c11, c55=c44, c66=2(c11-c12),c23=c13,
  1239. and c_{23}=c_{13}. Coefficients which are
  1240. not in the upper 3-dimensional submatrix,
  1241. not on the main diagonal, are zero.
  1242. (3)Use the five components of the compliance matrix
  1243. s11,s33,s44 (s44 is ANSYS s66),s12,s13,
  1244. for a z-poled ceramic.
  1245. (Note: s22=s11, s55=s44, s66=2(s11-s12),s23=s13,
  1246. and s_{23}=s_{13}. Coefficients which are
  1247. not in the upper 3-dimensional submatrix,
  1248. not on the main diagonal, are zero.
  1249. type <return> for default selection: [1]
  1250. 2
  1251. Enter c11 [ 0.13200E+12]
  1252. Enter c33 [ 0.11500E+12]
  1253. Enter c44 (ANSYS c66) [ 0.52000E+11]
  1254. Enter c12 [ 0.71000E+11]
  1255. Enter c13 [ 0.73000E+11]
  1256. Elasticity matrix c=
  1257. 0.1320E+12 0.7100E+11 0.7300E+11 0.0000E+00 0.0000E+00 0.0000E+00
  1258. 0.7100E+11 0.1320E+12 0.7300E+11 0.0000E+00 0.0000E+00 0.0000E+00
  1259. 0.7300E+11 0.7300E+11 0.1150E+12 0.0000E+00 0.0000E+00 0.0000E+00
  1260. 0.0000E+00 0.0000E+00 0.0000E+00 0.5200E+11 0.0000E+00 0.0000E+00
  1261. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.5200E+11 0.0000E+00
  1262. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1220E+12
  1263. Note: In ANSYS components 4,5,6 are permuted
  1264. ANSYS 44 is 66
  1265. ANSYS 55 is 44
  1266. ANSYS 66 is 55
  1267. Compliance matrix=
  1268. 0.1273E-10 -0.3665E-11 -0.5754E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1269. -0.3665E-11 0.1273E-10 -0.5754E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1270. -0.5754E-11 -0.5754E-11 0.1600E-10 0.0000E+00 0.0000E+00 0.0000E+00
  1271. 0.0000E+00 0.0000E+00 0.0000E+00 0.1923E-10 0.0000E+00 0.0000E+00
  1272. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1923E-10 0.0000E+00
  1273. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.8197E-11
  1274. Orthotropic constants from compliance matrix:
  1275. Young’s Modulus 1= 0.78561263E+11
  1276. Young’s Modulus 2= 0.78561263E+11
  1277. Young’s Modulus 3= 0.62497537E+11
  1278. Major Poisson ratio prxy= 0.28788955
  1279. Major Poisson ratio prxz= 0.45203533
  1280. Major Poisson ratio pryz= 0.45203533
  1281. Shear Modulus g23= 0.52000000E+11
  1282. Shear Modulus g13= 0.52000000E+11
  1283. Shear Modulus g12= 0.12200000E+12
  1284. 32Do you want to see the nonzero components
  1285. of the 81 elasticity tensor components of c? [n]
  1286. piezoelectric (stress) tensor coefficients
  1287. Do you want to see the nonzero components
  1288. of the 27 piezoelectric tensor components of e? [n]
  1289. Piezoelectric e matrix=
  1290. 0.0000E+00 0.0000E+00 -5.700
  1291. 0.0000E+00 0.0000E+00 -5.700
  1292. 0.0000E+00 0.0000E+00 8.400
  1293. 0.0000E+00 20.80 0.0000E+00
  1294. 20.80 0.0000E+00 0.0000E+00
  1295. 0.0000E+00 0.0000E+00 0.0000E+00
  1296. Second calculation:
  1297. e13= -5.700000000000001
  1298. e33= 8.400000000000000
  1299. e42= 20.80000000000000
  1300. Note: ANSYS e rows are permuted
  1301. ANSYS row 4 is row 6
  1302. ANSYS row 5 is row 4
  1303. ANSYS row 6 is row 5
  1304. ANSYS Piezoelectric e matrix=
  1305. 0.0000E+00 0.0000E+00 -5.700
  1306. 0.0000E+00 0.0000E+00 -5.700
  1307. 0.0000E+00 0.0000E+00 8.400
  1308. 0.0000E+00 0.0000E+00 0.0000E+00
  1309. 0.0000E+00 20.80 0.0000E+00
  1310. 20.80 0.0000E+00 0.0000E+00
  1311. d times e =
  1312. 0.8320E-08 0.0000E+00 0.0000E+00
  1313. 0.0000E+00 0.8320E-08 0.0000E+00
  1314. 0.0000E+00 0.0000E+00 0.2820E-08
  1315. Enter the unclamped dielectric constant K11
  1316. [ 1300.0000 ]
  1317. Enter the unclamped dielectric constant K33
  1318. [ 1000.0000 ]
  1319. Unclamped electric permitivity tensor=
  1320. 0.1151E-07 0.0000E+00 0.0000E+00
  1321. 0.0000E+00 0.1151E-07 0.0000E+00
  1322. 0.0000E+00 0.0000E+00 0.8850E-08
  1323. Clamped electric permitivity tensor=
  1324. 0.3185E-08 0.0000E+00 0.0000E+00
  1325. 0.0000E+00 0.3185E-08 0.0000E+00
  1326. 0.0000E+00 0.0000E+00 0.6030E-08
  1327. Enter density Kg/m^3 [7500]
  1328. /COM
  1329. /COM Material properties
  1330. /COM Young’s Moduli
  1331. EX, 2, 0.78561263E+11
  1332. EY, 2, 0.78561263E+11
  1333. EZ, 2, 0.62497537E+11
  1334. 33/COM ANSYS "Major" Poisson ratios
  1335. PRXY, 2, 0.28788955
  1336. PRXZ, 2, 0.45203533
  1337. PRYZ, 2, 0.45203533
  1338. /COM Density Kg/m^3
  1339. /COM DENS, 2, 0.75000000E-02
  1340. /COM clamped Permitivities
  1341. MP,PERX, 2, 0.31850000E-08
  1342. MP,PERY, 2, 0.31850000E-08
  1343. MP,PERZ, 2, 0.60300000E-08
  1344. /COM ANSYS Piezoelectric "e" matrix
  1345. TB,PIEZ,3
  1346. TBDATA, 3, -5.7000000
  1347. TBDATA, 6, -5.7000000
  1348. TBDATA, 9, 8.4000000
  1349. TBDATA, 14, 20.800000
  1350. TBDATA, 16, 20.800000
  1351. 0.20 Example, Orthotropic Elastic Constants
  1352. Reference: Jim Emery "Piezoelectricity", (piezoelc.ps)
  1353. Document location:/u51195/ps/piezoelc.ps,piezoelc.tex
  1354. Anonymous FTP: ftp.os.kcp.com /pub/emery/
  1355. Units are metric: Newton, Meter, Kilogram
  1356. stress: Newton/M^2 (Pascals)
  1357. Young’s Modulus: Pascals
  1358. Elasticity coefficients: Pascals, and so on)
  1359. Enter piezoelectric d constants (coulomb/newton)
  1360. The IRE convention for piezoelectric labeling is used
  1361. Type <return> for default value
  1362. Enter d33 [ 2.0000000000000001E-10]
  1363. Enter d31 [ -1.0000000000000000E-10]
  1364. Enter d15 [ 4.0000000000000001E-10]
  1365. d matrix=
  1366. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4000E-09 0.0000E+00
  1367. 0.0000E+00 0.0000E+00 0.0000E+00 0.4000E-09 0.0000E+00 0.0000E+00
  1368. -0.1000E-09 -0.1000E-09 0.2000E-09 0.0000E+00 0.0000E+00 0.0000E+00
  1369. Do you want to see the nonzero components
  1370. of the 27 d tensor components? [n]
  1371. Define the elasticity matrix or compliance matrix:
  1372. (1)Use elastic constants to define compliance
  1373. for orthotropic material, using Young’s moduli,
  1374. Poissons ratios, and Shear Moduli.
  1375. (2)Use the five components of the elastic matrix
  1376. c11,c33,c44 (c44 is ANSYS c66),c12,c13,
  1377. for a z-poled ceramic.
  1378. (Note: c22=c11, c55=c44, c66=2(c11-c12),c23=c13,
  1379. and c_{23}=c_{13}. Coefficients which are
  1380. not in the upper 3-dimensional submatrix,
  1381. not on the main diagonal, are zero.
  1382. 34(3)Use the five components of the compliance matrix
  1383. s11,s33,s44 (s44 is ANSYS s66),s12,s13,
  1384. for a z-poled ceramic.
  1385. (Note: s22=s11, s55=s44, s66=2(s11-s12),s23=s13,
  1386. and s_{23}=s_{13}. Coefficients which are
  1387. not in the upper 3-dimensional submatrix,
  1388. not on the main diagonal, are zero.
  1389. type <return> for default selection: [1]
  1390. Enter the orthotropic elastic constants
  1391. for a coordinate system in the principle directions
  1392. Enter Young’s Modulus, in x [ 0.12800E+12]
  1393. Enter Young’s Modulus, in y [ 0.12800E+12]
  1394. Enter Young’s Modulus, in z [ 0.11000E+12]
  1395. Enter ANSYS Poisson ratios (Theory sec. 2.1)
  1396. Enter Major Poisson ratio prxy[ 0.30000 ]
  1397. Enter Major Poisson ratio prxz[ 0.41976 ]
  1398. Enter Major Poisson ratio pryz[ 0.41976 ]
  1399. Enter shear modulus g23 [ 0.52000E+11]
  1400. Enter shear modulus g13 [ 0.52000E+11]
  1401. Enter shear modulus g12 [ 0.12200E+12]
  1402. Compliance matrix (elasticity inverse) cinv=
  1403. 0.7813E-11 -0.2344E-11 -0.3279E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1404. -0.2344E-11 0.7813E-11 -0.3279E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1405. -0.3279E-11 -0.3279E-11 0.9091E-11 0.0000E+00 0.0000E+00 0.0000E+00
  1406. 0.0000E+00 0.0000E+00 0.0000E+00 0.1923E-10 0.0000E+00 0.0000E+00
  1407. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1923E-10 0.0000E+00
  1408. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.8197E-11
  1409. Note: In ANSYS components 4,5,6 are permuted
  1410. (A different mapping from tensor to vector is used):
  1411. ANSYS 44 is 66
  1412. ANSYS 55 is 44
  1413. ANSYS 66 is 55
  1414. The five independent compliance coeficients are:
  1415. s11= 0.78125000E-11
  1416. s33= 0.90909091E-11
  1417. s44= 0.19230769E-10
  1418. s12=-0.23437500E-11
  1419. s13=-0.32793388E-11
  1420. Computing inverse matrix
  1421. Elasticity matrix =
  1422. 0.2104E+12 0.1119E+12 0.1163E+12 0.0000E+00 0.0000E+00 0.0000E+00
  1423. 0.1119E+12 0.2104E+12 0.1163E+12 0.0000E+00 0.0000E+00 0.0000E+00
  1424. 0.1163E+12 0.1163E+12 0.1939E+12 0.0000E+00 0.0000E+00 0.0000E+00
  1425. 0.0000E+00 0.0000E+00 0.0000E+00 0.5200E+11 0.0000E+00 0.0000E+00
  1426. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.5200E+11 0.0000E+00
  1427. 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1220E+12
  1428. Orthotropic constants from compliance matrix:
  1429. Young’s Modulus 1= 0.12800000E+12
  1430. Young’s Modulus 2= 0.12800000E+12
  1431. Young’s Modulus 3= 0.11000000E+12
  1432. Major Poisson ratio prxy= 0.30000000
  1433. Major Poisson ratio prxz= 0.41975537
  1434. Major Poisson ratio pryz= 0.41975537
  1435. Shear Modulus g23= 0.52000000E+11
  1436. 35Shear Modulus g13= 0.52000000E+11
  1437. Shear Modulus g12= 0.12200000E+12
  1438. Do you want to see the nonzero components
  1439. of the 81 elasticity tensor components of c? [n]
  1440. piezoelectric (stress) tensor coefficients
  1441. Do you want to see the nonzero components
  1442. of the 27 piezoelectric tensor components of e? [n]
  1443. Piezoelectric e matrix=
  1444. 0.0000E+00 0.0000E+00 -8.977
  1445. 0.0000E+00 0.0000E+00 -8.977
  1446. 0.0000E+00 0.0000E+00 15.52
  1447. 0.0000E+00 20.80 0.0000E+00
  1448. 20.80 0.0000E+00 0.0000E+00
  1449. 0.0000E+00 0.0000E+00 0.0000E+00
  1450. Second calculation:
  1451. e13= -8.977066554171117
  1452. e33= 15.52345455897376
  1453. e42= 20.80000000000000
  1454. Note: ANSYS e rows are permuted
  1455. ANSYS row 4 is row 6
  1456. ANSYS row 5 is row 4
  1457. ANSYS row 6 is row 5
  1458. ANSYS Piezoelectric e matrix=
  1459. 0.0000E+00 0.0000E+00 -8.977
  1460. 0.0000E+00 0.0000E+00 -8.977
  1461. 0.0000E+00 0.0000E+00 15.52
  1462. 0.0000E+00 0.0000E+00 0.0000E+00
  1463. 0.0000E+00 20.80 0.0000E+00
  1464. 20.80 0.0000E+00 0.0000E+00
  1465. d times e =
  1466. 0.8320E-08 0.0000E+00 0.0000E+00
  1467. 0.0000E+00 0.8320E-08 0.0000E+00
  1468. 0.0000E+00 0.0000E+00 0.4900E-08
  1469. Enter the unclamped dielectric constant K11
  1470. [ 1300.0000 ]
  1471. Enter the unclamped dielectric constant K33
  1472. [ 1000.0000 ]
  1473. Unclamped electric permittivity tensor=
  1474. 0.1151E-07 0.0000E+00 0.0000E+00
  1475. 0.0000E+00 0.1151E-07 0.0000E+00
  1476. 0.0000E+00 0.0000E+00 0.8850E-08
  1477. Clamped electric permittivity tensor=
  1478. 0.3185E-08 0.0000E+00 0.0000E+00
  1479. 0.0000E+00 0.3185E-08 0.0000E+00
  1480. 0.0000E+00 0.0000E+00 0.3950E-08
  1481. Enter density Kg/m^3 [7500]
  1482. /COM
  1483. /COM Material properties
  1484. /COM Young’s Moduli
  1485. EX, 2, 0.12800000E+12
  1486. EY, 2, 0.12800000E+12
  1487. EZ, 2, 0.11000000E+12
  1488. /COM ANSYS "Major" Poisson ratios
  1489. PRXY, 2, 0.30000000
  1490. 36PRXZ, 2, 0.41975537
  1491. PRYZ, 2, 0.41975537
  1492. /COM Density Kg/m^3
  1493. /COM DENS, 2, 0.75000000E-02
  1494. /COM clamped Permitivities
  1495. MP,PERX, 2, 0.31850000E-08
  1496. MP,PERY, 2, 0.31850000E-08
  1497. MP,PERZ, 2, 0.39498958E-08
  1498. /COM ANSYS Piezoelectric "e" matrix
  1499. TB,PIEZ,3
  1500. TBDATA, 3, -8.9770666
  1501. TBDATA, 6, -8.9770666
  1502. TBDATA, 9, 15.523455
  1503. TBDATA, 14, 20.800000
  1504. TBDATA, 16, 20.800000
  1505. 0.21 Program Listing of pzansys.ftn Program
  1506. Here is a listing of the program. The program works through tensor summations, matrix calculations, and matrix inversions. Each subroutine has a one
  1507. line description and a description of the parameters.
  1508. % cat pzansys.ftn
  1509. c pzansys.ftn stress and strain versions of the piezoelectric tensor
  1510. c Version 2/6/97
  1511. c Author: Jim Emery (AlliedSignal Kansas City)
  1512. c for the ansys finite element program.
  1513. column 11111111112222222222333333333344444444445555555555666666666677777777778
  1514. c2345678901234567890123456789012345678901234567890123456789012345678901234567890
  1515. c Reference: Jim Emery "Piezoelectricity" (File: piezoelc.tex)
  1516. implicit real*8 (a-h,o-z)
  1517. dimension d(3,3,3)
  1518. dimension e(3,3,3)
  1519. dimension c(3,3,3,3)
  1520. dimension dc(3,3)
  1521. dimension cmat(6,6)
  1522. dimension cmatinv(6,6)
  1523. dimension a(6,6),b(6,6),cc(6,6)
  1524. dimension dmat(3,6)
  1525. dimension emat(6,3)
  1526. dimension epsilon(3,3)
  1527. dimension clamped(3,3)
  1528. dimension ain(10)
  1529. dimension pr(3)
  1530. dimension ym(3)
  1531. real*8 nu12,nu23,nu13,nu21,nu32,nu31
  1532. character*1 cm
  1533. character*1 reply
  1534. character*53 cs1
  1535. zero=0.
  1536. c piezoelectric constants (coulomb/newton)
  1537. 37do i=1,3
  1538. do j=1,6
  1539. dmat(i,j)=0.
  1540. enddo
  1541. enddo
  1542. dmat(3,3)=200e-12
  1543. dmat(3,1)=-100e-12
  1544. dmat(1,5)=400e-12
  1545. write(*,*)’Reference: Jim Emery "Piezoelectricity", (piezoelc.ps)’
  1546. write(*,*)’Document location:/u51195/ps/piezoelc.ps,piezoelc.tex ’
  1547. write(*,*)’Anonymous FTP: ftp.os.kcp.com /pub/emery/ ’
  1548. write(*,*)’Units are metric: Newton, Meter, Kilogram’
  1549. write(*,*)’stress: Newton/M^2 (Pascals)’
  1550. write(*,*)’Young’’s Modulus: Pascals’
  1551. write(*,*)’Elasticity coefficients: Pascals, and so on)’
  1552. write(*,*)’Enter piezoelectric d constants (coulomb/newton)’
  1553. write(*,*)’The IRE convention for piezoelectric labeling is used’
  1554. write(*,*)’Type <return> for default value’
  1555. write(*,*)’Enter d33 [’,dmat(3,3),’]’
  1556. call readr(0,ain,nr)
  1557. if(nr .ge. 1)then
  1558. dmat(3,3)=ain(1)
  1559. endif
  1560. write(*,*)’Enter d31 [’,dmat(3,1),’]’
  1561. call readr(0,ain,nr)
  1562. if(nr .ge. 1)then
  1563. dmat(3,1)=ain(1)
  1564. endif
  1565. dmat(3,2)=dmat(3,1)
  1566. write(*,*)’Enter d15 [’,dmat(1,5),’]’
  1567. call readr(0,ain,nr)
  1568. if(nr .ge. 1)then
  1569. dmat(1,5)=ain(1)
  1570. endif
  1571. dmat(2,4)=dmat(1,5)
  1572. write(*,*)’ d matrix= ’
  1573. do i=1,3
  1574. write(*,’(6(g11.4,1x))’)(dmat(i,j),j=1,6)
  1575. enddo
  1576. c construct the components of the d tensor
  1577. do i=1,3
  1578. do j=1,3
  1579. do k=1,3
  1580. call t2vec(j,k,jk)
  1581. if(j .eq. k)then
  1582. d(i,j,k)=dmat(i,jk)
  1583. else
  1584. d(i,j,k)=dmat(i,jk)/2.
  1585. endif
  1586. enddo
  1587. enddo
  1588. enddo
  1589. write(*,*)’Do you want to see the nonzero components’
  1590. write(*,*)’of the 27 d tensor components? [n]’
  1591. read(*,’(a)’)reply
  1592. 38if(lenstr(reply) .eq. 0)then
  1593. reply=’n’
  1594. endif
  1595. if(reply .eq. ’y’)then
  1596. do i=1,3
  1597. do j=1,3
  1598. do k=1,3
  1599. if(d(i,j,k) .ne. zero)then
  1600. write(*,’(a,i1,i1,i1,a,g15.8)’)’d(’,i,j,k,’)=’,d(i,j,k)
  1601. endif
  1602. enddo
  1603. enddo
  1604. enddo
  1605. endif
  1606. c orthotropic elastic constants
  1607. write(*,*)’Define the elasticity matrix or compliance matrix:’
  1608. write(*,*)
  1609. write(*,*)’(1)Use elastic constants to define compliance’
  1610. write(*,*)’for orthotropic material, using Young’’s moduli,’
  1611. write(*,*)’Poissons ratios, and Shear Moduli.’
  1612. write(*,*)
  1613. write(*,*)’(2)Use the five components of the elastic matrix’
  1614. write(*,*)’c11,c33,c44 (c44 is ANSYS c66),c12,c13, ’
  1615. write(*,*)’for a z-poled ceramic.’
  1616. write(*,*)’(Note: c22=c11, c55=c44, c66=2(c11-c12),c23=c13,’
  1617. write(*,*)’and c_{23}=c_{13}. Coefficients which are’
  1618. write(*,*)’not in the upper 3-dimensional submatrix,’
  1619. write(*,*)’not on the main diagonal, are zero.’
  1620. write(*,*)
  1621. write(*,*)’(3)Use the five components of the compliance matrix’
  1622. write(*,*)’s11,s33,s44 (s44 is ANSYS s66),s12,s13,’
  1623. write(*,*)’for a z-poled ceramic.’
  1624. write(*,*)’(Note: s22=s11, s55=s44, s66=2(s11-s12),s23=s13,’
  1625. write(*,*)’and s_{23}=s_{13}. Coefficients which are’
  1626. write(*,*)’not in the upper 3-dimensional submatrix,’
  1627. write(*,*)’not on the main diagonal, are zero.’
  1628. write(*,*)’type <return> for default selection: [1]’
  1629. read(*,’(a)’)reply
  1630. if(lenstr(reply) .eq. 0)then
  1631. reply=’1’
  1632. endif
  1633. c2345678901234567890123456789012345678901234567890123456789012345678901234567890
  1634. c begin case1
  1635. if(reply .eq. ’1’)then
  1636. write(*,*)’Enter the orthotropic elastic constants’
  1637. write(*,*)’for a coordinate system in the principle directions’
  1638. e1=12.8e10
  1639. write(*,’(a,g12.5,a)’)’Enter Young’’s Modulus, in x [’,e1,’]’
  1640. call readr(0,ain,nr)
  1641. if(nr .eq. 1)then
  1642. 39e1=ain(1)
  1643. endif
  1644. e2=12.8e10
  1645. write(*,’(a,g12.5,a)’)’Enter Young’’s Modulus, in y [’,e2,’]’
  1646. call readr(0,ain,nr)
  1647. if(nr .eq. 1)then
  1648. e2=ain(1)
  1649. endif
  1650. e3=11.0e10
  1651. write(*,’(a,g12.5,a)’)’Enter Young’’s Modulus, in z [’,e3,’]’
  1652. call readr(0,ain,nr)
  1653. if(nr .eq. 1)then
  1654. e3=ain(1)
  1655. endif
  1656. c write(*,’(a)’)’NOTE. The poisson ratio nuij is the ’
  1657. c write(*,’(a)’)’the strain ratio -epsilon_j/epsilon_i ’
  1658. c write(*,’(a)’)’under a normal stress sigma_i’
  1659. write(*,*)
  1660. c nu31=.31
  1661. write(*,*)’Enter ANSYS Poisson ratios (Theory sec. 2.1)’
  1662. prxy=.3
  1663. prxz=.41975537
  1664. pryz=.41975537
  1665. write(*,’(a,g12.5,a)’)’Enter Major Poisson ratio prxy[’,prxy,’]’
  1666. call readr(0,ain,nr)
  1667. if(nr .eq. 1)then
  1668. prxy=ain(1)
  1669. endif
  1670. write(*,’(a,g12.5,a)’)’Enter Major Poisson ratio prxz[’,prxz,’]’
  1671. call readr(0,ain,nr)
  1672. if(nr .eq. 1)then
  1673. prxz=ain(1)
  1674. endif
  1675. write(*,’(a,g12.5,a)’)’Enter Major Poisson ratio pryz[’,pryz,’]’
  1676. call readr(0,ain,nr)
  1677. if(nr .eq. 1)then
  1678. prxz=ain(1)
  1679. endif
  1680. c g23=(e1*e2)/(e1+e2+2.*nu12*e1)
  1681. g23=5.2e10
  1682. write(*,’(a,g12.5,a)’)’Enter shear modulus g23 [’,g23,’]’
  1683. call readr(0,ain,nr)
  1684. if(nr .eq. 1)then
  1685. g23=ain(1)
  1686. endif
  1687. c g13=(e1*e2)/(e1+e2+2.*nu12*e1)
  1688. 40g13=5.2e10
  1689. write(*,’(a,g12.5,a)’)’Enter shear modulus g13 [’,g13,’]’
  1690. call readr(0,ain,nr)
  1691. if(nr .eq. 1)then
  1692. g13=ain(1)
  1693. endif
  1694. c g12=(e1*e2)/(e1+e2+2.*nu12*e1)
  1695. g12=12.2e10
  1696. write(*,’(a,g12.5,a)’)’Enter shear modulus g12 [’,g12,’]’
  1697. call readr(0,ain,nr)
  1698. if(nr .eq. 1)then
  1699. g12=ain(1)
  1700. endif
  1701. c build the compliance matrix
  1702. do i=1,6
  1703. do j=1,6
  1704. cmatinv(i,j)=0.
  1705. enddo
  1706. enddo
  1707. cmatinv(1,1)=1./e1
  1708. cmatinv(2,2)=1./e2
  1709. cmatinv(3,3)=1./e3
  1710. cmatinv(1,2)=-prxy/e1
  1711. cmatinv(2,1)=cmatinv(1,2)
  1712. cmatinv(1,3)=-prxz/e1
  1713. cmatinv(3,1)=cmatinv(1,3)
  1714. cmatinv(2,3)=-pryz/e2
  1715. cmatinv(3,2)=cmatinv(2,3)
  1716. cmatinv(4,4)=1/g23
  1717. cmatinv(5,5)=1/g13
  1718. cmatinv(6,6)=1/g12
  1719. write(*,*)’Compliance matrix (elasticity inverse) cinv= ’
  1720. do i=1,6
  1721. write(*,’(6(g11.4,1x))’)(cmatinv(i,j),j=1,6)
  1722. enddo
  1723. write(*,*)’Note: In ANSYS components 4,5,6 are permuted’
  1724. write(*,*)’(A different mapping from tensor to vector is used):’
  1725. write(*,*)’ANSYS 44 is 66’
  1726. write(*,*)’ANSYS 55 is 44’
  1727. write(*,*)’ANSYS 66 is 55’
  1728. write(*,*)’The five independent compliance coeficients are:’
  1729. write(*,’(a,g15.8)’)’s11=’,cmatinv(1,1)
  1730. write(*,’(a,g15.8)’)’s33=’,cmatinv(3,3)
  1731. write(*,’(a,g15.8)’)’s44=’,cmatinv(4,4)
  1732. write(*,’(a,g15.8)’)’s12=’,cmatinv(1,2)
  1733. write(*,’(a,g15.8)’)’s13=’,cmatinv(1,3)
  1734. do i=1,6
  1735. do j=1,6
  1736. a(i,j)=cmatinv(i,j)
  1737. enddo
  1738. 41enddo
  1739. ia=6
  1740. ib=6
  1741. n=6
  1742. m=6
  1743. inv=1
  1744. eps=1.e-10
  1745. idet=0
  1746. write(*,*)’Computing inverse matrix’
  1747. call gaussr(a,ia,b,ib,n,m,inv,eps,idet,det,ier)
  1748. if(ier .ne. 0)then
  1749. write(*,*)’ matrix is singular ’
  1750. endif
  1751. do i=1,6
  1752. do j=1,6
  1753. cmat(i,j)=b(i,j)
  1754. enddo
  1755. enddo
  1756. write(*,*)’ Elasticity matrix = ’
  1757. do i=1,6
  1758. write(*,’(6(g11.4,1x))’)(cmat(i,j),j=1,6)
  1759. enddo
  1760. m=6
  1761. n=6
  1762. l=6
  1763. ic=6
  1764. call matm(cmatinv,ia,m,n,b,ib,l,cc,ic)
  1765. c write(*,*)’Compliance matrix times elasticity matrix= ’
  1766. c do i=1,6
  1767. c write(*,’(6(g11.4,1x))’)(cc(i,j),j=1,6)
  1768. c enddo
  1769. endif
  1770. c end of case1
  1771. c begin case2
  1772. if(reply .eq. ’2’)then
  1773. do i=1,6
  1774. do j=1,6
  1775. cmat(i,j)=0.
  1776. enddo
  1777. enddo
  1778. cmat(1,1)=13.2e10
  1779. write(*,’(a,g12.5,a)’)’Enter c11 [’,cmat(1,1),’]’
  1780. call readr(0,ain,nr)
  1781. if(nr .eq. 1)then
  1782. cmat(1,1)=ain(1)
  1783. endif
  1784. cmat(2,2)=cmat(1,1)
  1785. cmat(3,3)=11.5e10
  1786. write(*,’(a,g12.5,a)’)’Enter c33 [’,cmat(3,3),’]’
  1787. 42call readr(0,ain,nr)
  1788. if(nr .eq. 1)then
  1789. cmat(3,3)=ain(1)
  1790. endif
  1791. cmat(4,4)=5.2e10
  1792. write(*,’(a,g12.5,a)’)’Enter c44 (ANSYS c66) [’,cmat(4,4),’]’
  1793. call readr(0,ain,nr)
  1794. if(nr .eq. 1)then
  1795. cmat(4,4)=ain(1)
  1796. endif
  1797. cmat(5,5)=cmat(4,4)
  1798. cmat(1,2)=7.1e10
  1799. write(*,’(a,g12.5,a)’)’Enter c12 [’,cmat(1,2),’]’
  1800. call readr(0,ain,nr)
  1801. if(nr .eq. 1)then
  1802. cmat(1,2)=ain(1)
  1803. endif
  1804. cmat(2,1)=cmat(1,2)
  1805. cmat(1,3)=7.3e10
  1806. write(*,’(a,g12.5,a)’)’Enter c13 [’,cmat(1,3),’]’
  1807. call readr(0,ain,nr)
  1808. if(nr .eq. 1)then
  1809. cmat(1,3)=ain(1)
  1810. endif
  1811. cmat(3,1)=cmat(1,3)
  1812. cmat(2,3)=cmat(1,3)
  1813. cmat(3,2)=cmat(2,3)
  1814. cmat(6,6)=2.*(cmat(1,1)-cmat(1,2))
  1815. write(*,*)’Elasticity matrix c=’
  1816. do i=1,6
  1817. write(*,’(6(g11.4,1x))’)(cmat(i,j),j=1,6)
  1818. enddo
  1819. write(*,*)’Note: In ANSYS components 4,5,6 are permuted’
  1820. write(*,*)’ANSYS 44 is 66’
  1821. write(*,*)’ANSYS 55 is 44’
  1822. write(*,*)’ANSYS 66 is 55’
  1823. do i=1,6
  1824. do j=1,6
  1825. a(i,j)=cmat(i,j)
  1826. enddo
  1827. enddo
  1828. ia=6
  1829. ib=6
  1830. n=6
  1831. m=6
  1832. inv=1
  1833. eps=1.e-10
  1834. idet=0
  1835. 43call gaussr(a,ia,b,ib,n,m,inv,eps,idet,det,ier)
  1836. if(ier .ne. 0)then
  1837. write(*,*)’ matrix is singular ’
  1838. endif
  1839. do i=1,6
  1840. do j=1,6
  1841. cmatinv(i,j)=b(i,j)
  1842. enddo
  1843. enddo
  1844. write(*,*)’Compliance matrix= ’
  1845. do i=1,6
  1846. write(*,’(6(g11.4,1x))’)(cmatinv(i,j),j=1,6)
  1847. enddo
  1848. m=6
  1849. n=6
  1850. l=6
  1851. ic=6
  1852. call matm(cmat,ia,m,n,cmatinv,ib,l,cc,ic)
  1853. c write(*,*)’Compliance matrix times elasticity matrix= ’
  1854. c do i=1,6
  1855. c write(*,’(6(g11.4,1x))’)(cc(i,j),j=1,6)
  1856. c enddo
  1857. endif
  1858. c end case2
  1859. c begin case3
  1860. if(reply .eq. ’3’)then
  1861. do i=1,6
  1862. do j=1,6
  1863. cmatinv(i,j)=0.
  1864. enddo
  1865. enddo
  1866. cmatinv(1,1) = 1.65e-11
  1867. cmatinv(3,3) = 2.07e-11
  1868. cmatinv(4,4) = 4.35e-11
  1869. cmatinv(1,2) = -4.78e-12
  1870. cmatinv(1,3) = -8.45e-12
  1871. write(*,’(a,g12.5,a)’)’Enter s11 [’,cmatinv(1,1),’]’
  1872. write(*,*)’Reference for default values:’
  1873. write(*,*)’Auld, Appendix A.4, PZT-5H’
  1874. call readr(0,ain,nr)
  1875. if(nr .eq. 1)then
  1876. cmatinv(1,1)=ain(1)
  1877. endif
  1878. cmatinv(2,2)=cmatinv(1,1)
  1879. 44write(*,’(a,g12.5,a)’)’Enter s33 [’,cmatinv(3,3),’]’
  1880. call readr(0,ain,nr)
  1881. if(nr .eq. 1)then
  1882. cmatinv(3,3)=ain(1)
  1883. endif
  1884. write(*,’(a,g12.5,a)’)’Enter s44 (ANSYS c66) [’,cmatinv(4,4),’]’
  1885. call readr(0,ain,nr)
  1886. if(nr .eq. 1)then
  1887. cmatinv(4,4)=ain(1)
  1888. endif
  1889. cmatinv(5,5)=cmatinv(4,4)
  1890. write(*,’(a,g12.5,a)’)’Enter s12 [’,cmatinv(1,2),’]’
  1891. call readr(0,ain,nr)
  1892. if(nr .eq. 1)then
  1893. cmatinv(1,2)=ain(1)
  1894. endif
  1895. cmatinv(2,1)=cmatinv(1,2)
  1896. write(*,’(a,g12.5,a)’)’Enter s13 [’,cmatinv(1,3),’]’
  1897. call readr(0,ain,nr)
  1898. if(nr .eq. 1)then
  1899. cmatinv(1,3)=ain(1)
  1900. endif
  1901. cmatinv(3,1)=cmatinv(1,3)
  1902. cmatinv(2,3)=cmatinv(1,3)
  1903. cmatinv(3,2)=cmatinv(2,3)
  1904. cmatinv(6,6)=2.*(cmatinv(1,1)-cmatinv(1,2))
  1905. write(*,*)’Compliance matrix s= cinv =’
  1906. do i=1,6
  1907. write(*,’(6(g11.4,1x))’)(cmatinv(i,j),j=1,6)
  1908. enddo
  1909. write(*,*)’Note: In ANSYS components 4,5,6 are permuted’
  1910. write(*,*)’ANSYS 44 is 66’
  1911. write(*,*)’ANSYS 55 is 44’
  1912. write(*,*)’ANSYS 66 is 55’
  1913. do i=1,6
  1914. do j=1,6
  1915. a(i,j)=cmatinv(i,j)
  1916. enddo
  1917. enddo
  1918. ia=6
  1919. ib=6
  1920. n=6
  1921. m=6
  1922. inv=1
  1923. eps=1.e-10
  1924. idet=0
  1925. write(*,*)’Computing inverse matrix’
  1926. call gaussr(a,ia,b,ib,n,m,inv,eps,idet,det,ier)
  1927. if(ier .ne. 0)then
  1928. write(*,*)’ matrix is singular ’
  1929. 45endif
  1930. do i=1,6
  1931. do j=1,6
  1932. cmat(i,j)=b(i,j)
  1933. enddo
  1934. enddo
  1935. write(*,*)’ Elasticity matrix = ’
  1936. do i=1,6
  1937. write(*,’(6(g11.4,1x))’)(cmat(i,j),j=1,6)
  1938. enddo
  1939. m=6
  1940. n=6
  1941. l=6
  1942. ic=6
  1943. call matm(cmatinv,ia,m,n,b,ib,l,cc,ic)
  1944. c write(*,*)’Compliance matrix times elasticity matrix= ’
  1945. c do i=1,6
  1946. c write(*,’(6(g11.4,1x))’)(cc(i,j),j=1,6)
  1947. c enddo
  1948. endif
  1949. c end case3
  1950. write(*,*)’Orthotropic constants from compliance matrix:’
  1951. e1=1./cmatinv(1,1)
  1952. e2=1./cmatinv(2,2)
  1953. e3=1./cmatinv(3,3)
  1954. write(*,’(a,g15.8)’)’Young’’s Modulus 1= ’,e1
  1955. write(*,’(a,g15.8)’)’Young’’s Modulus 2= ’,e2
  1956. write(*,’(a,g15.8)’)’Young’’s Modulus 3= ’,e3
  1957. prxy=-cmatinv(1,2)*e1
  1958. write(*,’(a,g15.8)’)’Major Poisson ratio prxy=’,prxy
  1959. prxz=-cmatinv(1,3)*e1
  1960. write(*,’(a,g15.8)’)’Major Poisson ratio prxz=’,prxz
  1961. pryz=-cmatinv(2,3)*e2
  1962. write(*,’(a,g15.8)’)’Major Poisson ratio pryz=’,pryz
  1963. g23= 1./cmatinv(4,4)
  1964. g13= 1./cmatinv(5,5)
  1965. g12= 1./cmatinv(6,6)
  1966. write(*,’(a,g15.8)’)’Shear Modulus g23= ’,g23
  1967. write(*,’(a,g15.8)’)’Shear Modulus g13= ’,g13
  1968. write(*,’(a,g15.8)’)’Shear Modulus g12= ’,g12
  1969. write(*,*)
  1970. c orthotropic elasticity tensor
  1971. do i=1,3
  1972. do j=1,3
  1973. do k=1,3
  1974. e(i,j,k)=0.
  1975. do l=1,3
  1976. c(i,j,k,l)=0.
  1977. enddo
  1978. enddo
  1979. enddo
  1980. 46enddo
  1981. do i=1,3
  1982. do j=1,3
  1983. call t2vec(i,j,ij)
  1984. do k=1,3
  1985. do l=1,3
  1986. call t2vec(k,l,kl)
  1987. if(k .eq. l)then
  1988. c(i,j,k,l)=cmat(ij,kl)
  1989. else
  1990. c(i,j,k,l)=cmat(ij,kl)/2.
  1991. endif
  1992. enddo
  1993. enddo
  1994. enddo
  1995. enddo
  1996. c
  1997. write(*,*)’Do you want to see the nonzero components’
  1998. write(*,*)’of the 81 elasticity tensor components of c? [n]’
  1999. read(*,’(a)’)reply
  2000. if(lenstr(reply) .eq. 0)then
  2001. reply=’n’
  2002. endif
  2003. if(reply .eq. ’y’)then
  2004. do i=1,3
  2005. do j=1,3
  2006. do k=1,3
  2007. do l=1,3
  2008. if(c(i,j,k,l) .ne. zero)then
  2009. write(*,’(a,i1,i1,i1,i1,a,g15.8)’)’c(’,i,j,k,l,’)=’,c(i,j,k,l)
  2010. endif
  2011. enddo
  2012. enddo
  2013. enddo
  2014. enddo
  2015. endif
  2016. write(*,*)’ piezoelectric (stress) tensor coefficients’
  2017. do i=1,3
  2018. do j=1,3
  2019. do k=1,3
  2020. e(i,j,k)=0.
  2021. do l=1,3
  2022. do m=1,3
  2023. e(i,j,k) = e(i,j,k) + d(i,l,m)*c(l,m,j,k)
  2024. enddo
  2025. enddo
  2026. c write(*,’(a,i1,i1,i1,a,g15.8)’)’e(’,i,j,k,’)=’,e(i,j,k)
  2027. enddo
  2028. enddo
  2029. enddo
  2030. write(*,*)’Do you want to see the nonzero components’
  2031. write(*,*)’of the 27 piezoelectric tensor components of e? [n]’
  2032. read(*,’(a)’)reply
  2033. if(lenstr(reply) .eq. 0)then
  2034. reply=’n’
  2035. 47endif
  2036. if(reply .eq. ’y’)then
  2037. do i=1,3
  2038. do j=1,3
  2039. do k=1,3
  2040. if(e(i,j,k) .ne. zero)then
  2041. write(*,’(a,i1,i1,i1,a,g15.8)’)’e(’,i,j,k,’)=’,e(i,j,k)
  2042. endif
  2043. enddo
  2044. enddo
  2045. enddo
  2046. endif
  2047. c compute the e piezoelectric matrix
  2048. do i=1,3
  2049. do jk=1,6
  2050. call vec2t(jk,j,k)
  2051. if(j .eq. k)then
  2052. emat(jk,i) = e(i,j,k)
  2053. else
  2054. emat(jk,i) = 2.*e(i,j,k)
  2055. endif
  2056. enddo
  2057. enddo
  2058. c
  2059. write(*,*)’Piezoelectric e matrix= ’
  2060. do i=1,6
  2061. write(*,’(3(g11.4,1x))’)(emat(i,j),j=1,3)
  2062. enddo
  2063. write(*,*)’Second calculation:’
  2064. e13=cmat(1,1)*dmat(3,1)+cmat(1,2)*dmat(3,1)+cmat(1,3)*dmat(3,3)
  2065. write(*,*)’e13=’,e13
  2066. e33=cmat(1,3)*dmat(3,1)+cmat(1,3)*dmat(3,1)+cmat(3,3)*dmat(3,3)
  2067. write(*,*)’e33=’,e33
  2068. e42=cmat(4,4)*dmat(1,5)
  2069. write(*,*)’e42=’,e42
  2070. write(*,*)’Note: ANSYS e rows are permuted’
  2071. write(*,*)’ANSYS row 4 is row 6 ’
  2072. write(*,*)’ANSYS row 5 is row 4 ’
  2073. write(*,*)’ANSYS row 6 is row 5 ’
  2074. write(*,*)’ANSYS Piezoelectric e matrix= ’
  2075. do i=1,3
  2076. write(*,’(3(g11.4,1x))’)(emat(i,j),j=1,3)
  2077. enddo
  2078. write(*,’(3(g11.4,1x))’)(emat(6,j),j=1,3)
  2079. write(*,’(3(g11.4,1x))’)(emat(4,j),j=1,3)
  2080. write(*,’(3(g11.4,1x))’)(emat(5,j),j=1,3)
  2081. c dielectric constants (farads/meter)
  2082. 48c dc(1,1)=7.12e-9
  2083. c dc(2,2)=7.12e-9
  2084. c dc(3,3)=5.84e-9
  2085. c density (kilograms/meter^3)
  2086. c density=7.5e3
  2087. cm=’,’
  2088. idmat=3
  2089. m=3
  2090. n=6
  2091. iemat=6
  2092. l=3
  2093. icc=6
  2094. call matm(dmat,idmat,m,n,emat,iemat,l,cc,icc)
  2095. write(*,*)’d times e = ’
  2096. do i=1,3
  2097. write(*,’(3(g11.4,1x))’)(cc(i,j),j=1,3)
  2098. enddo
  2099. c compute permittivity tensor
  2100. eps0=8.85e-12
  2101. do i=1,3
  2102. do j=1,3
  2103. epsilon(i,j)=0.
  2104. enddo
  2105. enddo
  2106. dielx=1300.
  2107. write(*,’(a)’)’Enter the unclamped dielectric constant K11’
  2108. write(*,’(a,g15.8,a)’)’[’,dielx,’]’
  2109. call readr(0,ain,nr)
  2110. if(nr .eq. 1)then
  2111. dielx=ain(1)
  2112. endif
  2113. epsilon(1,1)=dielx*eps0
  2114. diely=dielx
  2115. c cs1=’Enter the dielectric constant K22’
  2116. c write(*,’(a,a,g15.8,a)’)cs1,’ [’,diely,’]’
  2117. c call readr(0,ain,nr)
  2118. c if(nr .eq. 1)then
  2119. c diely=ain(1)
  2120. c endif
  2121. epsilon(2,2)=diely*eps0
  2122. dielz=1000.
  2123. write(*,’(a)’)’Enter the unclamped dielectric constant K33’
  2124. write(*,’(a,g15.8,a)’)’[’,dielz,’]’
  2125. call readr(0,ain,nr)
  2126. if(nr .eq. 1)then
  2127. dielz=ain(1)
  2128. endif
  2129. epsilon(3,3)=dielz*eps0
  2130. write(*,*)’Unclamped electric permittivity tensor=’
  2131. do i=1,3
  2132. 49write(*,’(3(g11.4,1x))’)(epsilon(i,j),j=1,3)
  2133. enddo
  2134. do i=1,3
  2135. do j=1,3
  2136. clamped(i,j)= epsilon(i,j) - cc(i,j)
  2137. enddo
  2138. enddo
  2139. write(*,*)’Clamped electric permittivity tensor=’
  2140. do i=1,3
  2141. write(*,’(3(g11.4,1x))’)(clamped(i,j),j=1,3)
  2142. enddo
  2143. do i=1,3
  2144. do j=1,3
  2145. sum=0.
  2146. do k=1,3
  2147. do l=1,3
  2148. sum=sum+d(i,k,l)*e(j,k,l)
  2149. c if((i .eq. 1) .and. (j .eq. 1))then
  2150. c write(*,*)k,l,’ d= ’,d(i,k,l),’ e= ’,e(j,k,l)
  2151. c endif
  2152. enddo
  2153. enddo
  2154. epsilon(i,j)=epsilon(i,j)-sum
  2155. enddo
  2156. enddo
  2157. c write(*,*)’Clamped electric permittivity tensor=’
  2158. c do i=1,3
  2159. c write(*,’(3(g11.4,1x))’)(epsilon(i,j),j=1,3)
  2160. c enddo
  2161. rho= 7.500000E-03
  2162. write(*,*)’Enter density Kg/m^3 [7500]’
  2163. call readr(0,ain,nr)
  2164. if(nr .ge. 1)then
  2165. rho=ain(1)
  2166. endif
  2167. write(*,’(a)’)’/COM ’
  2168. write(*,’(a)’)’/COM Material properties’
  2169. c material number
  2170. mn=2
  2171. write(*,’(a)’)’/COM Young’’s Moduli’
  2172. write(*,’(a,i3,a,g15.8)’)’EX,’,mn,cm,e1
  2173. write(*,’(a,i3,a,g15.8)’)’EY,’,mn,cm,e2
  2174. write(*,’(a,i3,a,g15.8)’)’EZ,’,mn,cm,e3
  2175. write(*,’(a)’)’/COM ANSYS "Major" Poisson ratios’
  2176. c reference ANSYS Theory 2.1 structural fundamentals
  2177. prxy=-cmatinv(1,2)*e1
  2178. write(*,’(a,i3,a,g15.8)’)’PRXY,’,mn,cm,prxy
  2179. 50prxz=-cmatinv(1,3)*e1
  2180. write(*,’(a,i3,a,g15.8)’)’PRXZ,’,mn,cm,prxz
  2181. pryz=-cmatinv(2,3)*e2
  2182. write(*,’(a,i3,a,g15.8)’)’PRYZ,’,mn,cm,pryz
  2183. write(*,’(a)’)’/COM Density Kg/m^3’
  2184. write(*,’(a,i3,a,g15.8)’)’/COM DENS,’,mn,cm,rho
  2185. write(*,’(a)’)’/COM clamped Permitivities’
  2186. c epsilon(1,1)=8.7969e-12
  2187. c epsilon(2,2)=8.7969e-12
  2188. c epsilon(3,3)=8.7969e-12
  2189. write(*,’(a,i3,a,g15.8)’)’MP,PERX,’,mn,cm,clamped(1,1)
  2190. write(*,’(a,i3,a,g15.8)’)’MP,PERY,’,mn,cm,clamped(2,2)
  2191. write(*,’(a,i3,a,g15.8)’)’MP,PERZ,’,mn,cm,clamped(3,3)
  2192. write(*,’(a)’)’/COM ANSYS Piezoelectric "e" matrix’
  2193. write(*,’(a)’)’TB,PIEZ,3’
  2194. write(*,’(a,i3,a,g15.8)’)’TBDATA,’,3,cm,emat(1,3)
  2195. write(*,’(a,i3,a,g15.8)’)’TBDATA,’,6,cm,emat(2,3)
  2196. write(*,’(a,i3,a,g15.8)’)’TBDATA,’,9,cm,emat(3,3)
  2197. c ansysemat(5,2)=emat(4,2)
  2198. write(*,’(a,i3,a,g15.8)’)’TBDATA,’,14,cm,emat(4,2)
  2199. c ansysemat(6,1)=emat(5,1)
  2200. write(*,’(a,i3,a,g15.8)’)’TBDATA,’,16,cm,emat(5,1)
  2201. end
  2202. c+ readr read a row of floating point numbers
  2203. subroutine readr(nf, a, nr)
  2204. implicit real*8(a-h,o-z)
  2205. c numbers are separated by spaces
  2206. c examples of valid numbers are:
  2207. c 12.13 34 45e4 4.78e-6 4e2,5.6D-23,10000.d015
  2208. c nf=file number, 0 for standard input file
  2209. c a=array of returned numbers
  2210. c nr=number of values in returned array,
  2211. c or 0 for empty or blank line,
  2212. c or -1 for end of file on unit nf.
  2213. c requires functions val and length
  2214. dimension a(*)
  2215. character*200 b
  2216. character*200 c
  2217. character*1 d
  2218. c=’ ’
  2219. if(nf.eq.0)then
  2220. read(*,’(a)’,end=99)b
  2221. else
  2222. read(nf,’(a)’,end=99)b
  2223. endif
  2224. nr=0
  2225. l=lenstr(b)
  2226. if(l.ge.200)then
  2227. write(*,*)’ error in readr subroutine ’
  2228. write(*,*)’ record is too long ’
  2229. endif
  2230. do 1 i=1,l
  2231. d=b(i:i)
  2232. if (d.ne.’ ’) then
  2233. 51k=lenstr(c)
  2234. if (k.gt.0)then
  2235. c=c(1:k)//d
  2236. else
  2237. c=d
  2238. endif
  2239. endif
  2240. if( (d.eq.’ ’).or.(i.eq.l)) then
  2241. if (c.ne.’ ’) then
  2242. nr=nr+1
  2243. call valsub(c,a(nr),ier)
  2244. c=’ ’
  2245. endif
  2246. endif
  2247. 1 continue
  2248. return
  2249. 99 nr=-1
  2250. return
  2251. end
  2252. c
  2253. c+ lenstr nonblank length of string
  2254. function lenstr(s)
  2255. c length of the substring of s obtained by deleting all
  2256. c trailing blanks from s. thus the length of a string
  2257. c containing only blanks will be 0.
  2258. character s*(*)
  2259. lenstr=0
  2260. n=len(s)
  2261. do 10 i=n,1,-1
  2262. if(s(i:i) .ne. ’ ’)then
  2263. lenstr=i
  2264. return
  2265. endif
  2266. 10 continue
  2267. return
  2268. end
  2269. c+ valsub converts string to floating point number (r*8)
  2270. subroutine valsub(s,v,ier)
  2271. implicit real*8(a-h,o-z)
  2272. c examples of valid strings are: 12.13 34 45e4 4.78e-6 4E2
  2273. c the string is checked for valid characters,
  2274. c but the string can still be invalid.
  2275. c s-string
  2276. c v-returned value
  2277. c ier- 0 normal
  2278. c 1 if invalid character found, v returned 0
  2279. c
  2280. logical p
  2281. character s*(*),c*50,t*50,ch*15
  2282. character z*1
  2283. data ch/’1234567890+-.eE’/
  2284. v=0.
  2285. ier=1
  2286. l=lenstr(s)
  2287. if(l.eq.0)return
  2288. 52p=.true.
  2289. do 10 i=1,l
  2290. z=s(i:i)
  2291. if((z.eq.’D’).or.(z.eq.’d’))then
  2292. s(i:i)=’e’
  2293. endif
  2294. p=p.and.(index(ch,s(i:i)).ne.0)
  2295. 10 continue
  2296. if(.not.p)return
  2297. n=index(s,’.’)
  2298. if(n.eq.0)then
  2299. n=index(s,’e’)
  2300. if(n.eq.0)n=index(s,’E’)
  2301. if(n.eq.0)n=index(s,’d’)
  2302. if(n.eq.0)n=index(s,’D’)
  2303. if(n.eq.0)then
  2304. s=s(1:l)//’.’
  2305. else
  2306. t=s(n:l)
  2307. s=s(1:(n-1))//’.’//t
  2308. endif
  2309. l=l+1
  2310. endif
  2311. write(c,’(a30)’)s(1:l)
  2312. read(c,’(g30.23)’)v
  2313. ier=0
  2314. return
  2315. end
  2316. c+ str floating point number to string
  2317. subroutine str(x,s)
  2318. implicit real*8(a-h,o-z)
  2319. character s*25,c*25,b*25,e*25
  2320. zero=0.
  2321. if(x.eq.zero)then
  2322. s=’0’
  2323. return
  2324. endif
  2325. write(c,’(g11.4)’)x
  2326. read(c,’(a25)’)b
  2327. l=lenstr(b)
  2328. do 10 i=1,l
  2329. n1=i
  2330. if(b(i:i).ne.’ ’)go to 20
  2331. 10 continue
  2332. 20 continue
  2333. if(b(n1:n1).eq.’0’)n1=n1+1
  2334. b=b(n1:l)
  2335. l=l+1-n1
  2336. k=index(b,’E’)
  2337. if(k.gt.0)e=b(k:l)
  2338. if(k.gt.0)then
  2339. s=b(1:(k-1))
  2340. k1=index(b,’E+0’)
  2341. if(k1.gt.0)then
  2342. e=’E’//b((k1+3):l)
  2343. 53else
  2344. k1=index(b,’E+’)
  2345. if(k1.gt.0)e=’E’//b((k1+2):l)
  2346. endif
  2347. k1=index(b,’E-0’)
  2348. if(k1.gt.0)e=’E-’//b((k1+3):l)
  2349. l=k-1
  2350. else
  2351. s=b
  2352. endif
  2353. j=index(s,’.’)
  2354. n2=l
  2355. if(j.ne.0)then
  2356. do 30 i=1,l
  2357. n2=l+1-i
  2358. if(s(n2:n2).ne.’0’)go to 40
  2359. 30 continue
  2360. endif
  2361. 40 continue
  2362. s=s(1:n2)
  2363. if(s(n2:n2).eq.’.’)then
  2364. s=s(1:(n2-1))
  2365. n2=n2-1
  2366. endif
  2367. if(k.gt.0)s=s(1:n2)//e
  2368. return
  2369. end
  2370. c+ t2vec stress tensor index to vector index
  2371. subroutine t2vec(i,j,k)
  2372. c input:
  2373. c i,j
  2374. c output:
  2375. c k
  2376. c so that sigma(k)=sigma(i,j)
  2377. integer m(3,3)
  2378. data m/1,6,5,6,2,4,5,4,3/
  2379. k=m(i,j)
  2380. return
  2381. end
  2382. c+ vec2t stress vector index to tensor index
  2383. subroutine vec2t(k,i,j)
  2384. c input:
  2385. c k
  2386. c output:
  2387. c i,j
  2388. c so that sigma(i,j)=sigma(k)
  2389. integer mi(6),mj(6)
  2390. data mi/1,2,3,2,1,1/
  2391. data mj/1,2,3,3,3,2/
  2392. i=mi(k)
  2393. j=mj(k)
  2394. return
  2395. end
  2396. c+ gaussr solution of linear equations, inverse, determinant (real) new version
  2397. c gaussr2.ftn 4/17/96 modernization of gaussr under construction
  2398. 54subroutine gaussr(a,ia,b,ib,n,m,inv,eps,idet,det,ier)
  2399. c solves the equation a*c=b for c, where a is an n by n matrix
  2400. c c and b are n row by m column matrices. c is returned as b.
  2401. c algorithm -gaussian elimination with partial pivoting.
  2402. c parameters a-n by n matrix containing the coefficients of
  2403. c the linear system.
  2404. c ia-row dimension of a in defining routine
  2405. c e.g. in the routine where a is defined,
  2406. c a might be dimensioned as:
  2407. c dimension a(nr,nc)
  2408. c then ia must be set to nr. we may have n < ia, but
  2409. c must not have n > ia, or n*n > nr*nc.
  2410. c ia is needed for proper addressing of matrix a.
  2411. c fortran stores by column first: a(i,j)=a(i+(j-1)*ia))
  2412. c b-n by m matrix containing the m right sides
  2413. c of the equations, on entering. on returning, b
  2414. c contains the solutions. the inverse of a is
  2415. c returned in b when inv=1
  2416. c ib-row dimension of b in defining routine
  2417. c n-row and column dimension of a.
  2418. c m-column dimension of b (usually 1)
  2419. c the program changes m to n when inv=1
  2420. c inv-the inverse of a is calculated
  2421. c and returned in b when inv=1
  2422. c b must be large enough to hold the inverse
  2423. c eps-each equation is normalized so that the
  2424. c coefficients are <= 1 in magnitude.
  2425. c when a pivot is less than eps the matrix is
  2426. c considered nearly singular, and ier is set to 1
  2427. c if a pivot is zero the matrix is singular, and
  2428. c ier is set to 2. one may set eps=1.e-5 for
  2429. c single precision, and 1.e-12 for double.
  2430. c eps does not effect any calculation.
  2431. c normalization may also prevent exponent overflow.
  2432. c idet-compute determinant only if idet = 1
  2433. c determinants are products of n numbers.
  2434. c overflow can occur if the elements of the
  2435. c matrix have large exponents.
  2436. c set idet=0 if the determinant is not needed.
  2437. c det-determinant of a.
  2438. c ier-return parameter,
  2439. c ier=0 normal return
  2440. c ier=1 matrix is nearly singular
  2441. c ier=2 matrix is singular
  2442. c
  2443. c warning!! the subroutine changes a and b. if they need to be
  2444. c saved, copies must be made before calling the subroutine.
  2445. c the subroutine can be converted to different number type
  2446. c by uncommenting the appropriate implicit statement.
  2447. implicit real*8(a-h,o-z)
  2448. c implicit complex(a-h,o-z)
  2449. c implicit complex*16(a-h,o-z)
  2450. logical cdet
  2451. dimension a(ia,*),b(ib,*)
  2452. cdet = idet .eq. 1
  2453. 55zero=0.
  2454. ier=0
  2455. det=1.
  2456. if(m.le.0)m=1
  2457. if(inv.eq.1)then
  2458. c set b equal to the identity
  2459. do i=1,n
  2460. do j=1,n
  2461. b(i,j)=0.
  2462. if(i.eq.j)b(i,j)=1.
  2463. enddo
  2464. enddo
  2465. m=n
  2466. endif
  2467. c normalize rows
  2468. do 20 i=1,n
  2469. bigest=a(i,1)
  2470. do 16 j=2,n
  2471. ab=a(i,j)
  2472. if(abs(ab).gt.abs(bigest))bigest=ab
  2473. 16 continue
  2474. if(bigest.eq.zero)then
  2475. ier=2
  2476. det=0.
  2477. return
  2478. endif
  2479. if(cdet)det=det*bigest
  2480. do 18 j=1,n
  2481. a(i,j)=a(i,j)/bigest
  2482. 18 continue
  2483. do 19 j=1,m
  2484. b(i,j)=b(i,j)/bigest
  2485. 19 continue
  2486. 20 continue
  2487. j=1
  2488. do while( j .lt. n)
  2489. kk=j+1
  2490. l=j
  2491. c find row l with largest pivot
  2492. do 32 i=kk,n
  2493. if(abs(a(i,j)).gt.abs(a(l,j)))l=i
  2494. 32 continue
  2495. if(abs(a(l,j)).eq.zero)then
  2496. ier=2
  2497. det=0.
  2498. return
  2499. endif
  2500. if(abs(a(l,j)).le.abs(eps))ier=1
  2501. if(l.ne.j)then
  2502. c interchange rows l and j
  2503. do 37 k=1,n
  2504. c=a(l,k)
  2505. a(l,k)=a(j,k)
  2506. a(j,k)=c
  2507. 37 continue
  2508. 56do 39 k=1,m
  2509. c=b(l,k)
  2510. b(l,k)=b(j,k)
  2511. b(j,k)=c
  2512. 39 continue
  2513. if(cdet)det=det*(-1.)
  2514. endif
  2515. if(cdet)det=det*a(j,j)
  2516. c divide row by pivot
  2517. c=a(j,j)
  2518. do 50 k=j,n
  2519. a(j,k)=a(j,k)/c
  2520. 50 continue
  2521. do 55 k=1,m
  2522. b(j,k)=b(j,k)/c
  2523. 55 continue
  2524. c add multiple of row j to lower rows
  2525. c to eliminate jth coefficients
  2526. jj=j+1
  2527. do 80 i=jj,n
  2528. am=a(i,j)
  2529. do 60 k=1,n
  2530. a(i,k)=a(i,k)-am*a(j,k)
  2531. 60 continue
  2532. do 70 k=1,m
  2533. b(i,k)=b(i,k)-am*b(j,k)
  2534. 70 continue
  2535. 80 continue
  2536. j=j+1
  2537. enddo
  2538. am=a(n,n)
  2539. if(abs(am).eq.zero)then
  2540. ier=2
  2541. det=0.
  2542. return
  2543. endif
  2544. if(abs(am).le.abs(eps))ier=1
  2545. if(cdet)det=det*am
  2546. c a is now in triangular form
  2547. c compute nth component of solution
  2548. do 90 k=1,m
  2549. b(n,k)=b(n,k)/am
  2550. 90 continue
  2551. c back substitute to compute n-i component
  2552. c i=1,2,3,...
  2553. nn=n-1
  2554. do 120 i=1,nn
  2555. ni=n-i
  2556. do 110 j=1,m
  2557. nj=ni+1
  2558. do 100 ki=nj,n
  2559. b(ni,j)=b(ni,j)-a(ni,ki)*b(ki,j)
  2560. 100 continue
  2561. 110 continue
  2562. 120 continue
  2563. 57return
  2564. end
  2565. subroutine matm(a,ia,m,n,b,ib,l,c,ic)
  2566. implicit real*8(a-h,o-z)
  2567. c arguments
  2568. c a-matrix
  2569. c ia-row dimension of a in calling program
  2570. c m-number of rows of a
  2571. c n-number of columns of a
  2572. c b-matrix
  2573. c ib-row dimension of b in calling program
  2574. c l-number of columns of b
  2575. c c-product matrix: c=a*b
  2576. c ic-row dimension of c in calling program
  2577. c
  2578. dimension a(ia,*),b(ib,*),c(ic,*)
  2579. c c=a*b
  2580. do 10 i=1,m
  2581. do 10 j=1,l
  2582. c(i,j)=0.
  2583. do 5 k=1,n
  2584. 5 c(i,j)=c(i,j)+a(i,k)*b(k,j)
  2585. 10 continue
  2586. return
  2587. end
  2588. 0.22 Location of Piezoelectric Information In
  2589. ANSYS Manuals
  2590. • Index assignment for stress-strain tensor to six-vector: Theory 2.1.
  2591. • Major and Minor Poisson ratios, orthotropic compliance matrices: Theory 2.1.
  2592. • Piezoelectric Solid Element SOLID5: Elements manual 4-39.
  2593. • Piezoelectric Plane Element PLANE13: Elements manual 4-85.
  2594. • Piezoelectric Tetrahedral Coupled Solid Element SOLID98: Elements
  2595. manual 4-653.
  2596. • Piezoelectric Analysis: Procedures Coupled-Field Analysis 8.1, piezoelectric analysis p8-13 to p8-15.
  2597. • Defining matrices: Commands TB and TBDATA, Commands manual.
  2598. 58• Piezoelectrics Theory: Theory Manual 11.1 to page 11-17.
  2599. • Example VM175: Natural Frequency of a Piezoelectric Transducer
  2600. ...(ANSYS Stuff Notebook). Reference: Boucher D, Lagier M, Maerfeld C, IEEE Transactions on Sonics and Ultrasonics, Volume SU-28,
  2601. No. 5 September 1981 pp318-330.
  2602. • Example VM176: Frequency Response of Electrical Admittance for a
  2603. Piezoelectric Transducer, Reference: Kagawa and Yamabuchi, IEEE
  2604. Trans. Sonics and Ultrasonics, V. SU-26, No. 2, March 1979.
  2605. • Example PM13, ANSYS Examples Supplement, Piezoelectric Beam
  2606. Resonator
  2607. 0.23 ANSYS Comparison For A Composite
  2608. Piezoelectric Transducer: Example VM176.
  2609. Reference for the problem: Kagawa and Yamabuchi Finite Element Simulation of a Composite Piezoelectric Transducer IEEE Transactions
  2610. on Sonics and Ultrasonics, Vol. SU-26, No 2 march 1979.
  2611. The transducer consists of cylindrical disks of aluminum, adhesive, PZT,
  2612. adhesive, and aluminum.
  2613. PZT material: NEPEC 6
  2614. Elasticity matrix
  2615. c = 10
  2616. 10
  2617. 12.8 6.8 6.6 0  0  0
  2618. 6.8 12.8 6.6 0  0  0
  2619. 6.6 6.6 11  0  0  0
  2620. 0 0 0 2.1 0  0
  2621. 0 0 0 0 2.1 0
  2622. 0  0  0 0 0 2.1
  2623. 59Piezoelectric matrix (C oulomb/M  eter
  2624. 2
  2625. )
  2626. e =
  2627. 0 0 −6.1
  2628. 0 0 −6.1
  2629. 0 0  15.7
  2630. 0 0  0
  2631. 0 0  0
  2632. 0 0  0
  2633. Dielectric Matrix (F arad/M eter)
  2634.  = 10−9
  2635. 8.7969 0 0
  2636. 0 8.7969 0
  2637. 0 0 8.7969
  2638. See ANSYS notebook for more details.
  2639. 600.24 Piezoelectricity Bibliography
  2640. [1]Agarwal Bhagwan D, Broutman Lawrence, Analysis And Performance
  2641. Of Fiber Composites.
  2642. [2]Ahmed F R, Crystallographic Computing, Proceedings International
  2643. Summer School, Linda Hall Library.
  2644. [3]Allik H, Hughes J R, Finite Element Method For Piezoelectric Vibration, International Journal of Numerical Methods For Engineering, V.
  2645. 2, pp 151-157, 1970, (This is the formulation of the problem that is implemented in ANSYS.).
  2646. [4]Ashton J E, Whitney J M, Theory Of Laminated Plates, Linda Hall
  2647. Library, 1979.
  2648. [5]Ashton T E, Halpin T C, Petit P H, Primer On Composite Materials
  2649. Analysis, Technomic, Stamford Conn., 1969.
  2650. [6]Auld B A, Acoustic Fields And Waves In Solids, Volumes I and II.
  2651. [7]Billington E W, Introduction To The Mechanics And Physics Of
  2652. Solids, AlliedSignal Library, QA808 .2, 1986, A Mathematical Book. Von
  2653. Mises Yield Criterion. Von Mises Stress.
  2654. [8]Bottom Virgil E, The Theory And Design Of Quartz Crystal Units,
  2655. 2nd Ed., 1974, (Self Published), Linda Hall, (Piezoelectric Transducers.).
  2656. [9]Boucher D, Lagier M, Maerfeld, Computation Of The Vibrational
  2657. Modes For Piezoelectric Array Transducers Using A Mixed Finite
  2658. Element-Perturbation Method, IEEE Transactions on Sonics And Ultrasonics, V. Su28, No. 8, Sept 81.
  2659. [10]Brebbia, Dewilde,Blain, Computer Aided Design In Composite Material Technology, TA 418.9 .c6 I585, 1988, Linda Hall.
  2660. [11]Buchanon Relva C, Editor, Ceramic Materials For Electronics, 2nd
  2661. Ed., 1991, AlliedSignal Library, (Piezoelectricity.).
  2662. [12]Buerger, Martin, Introduction To Crystal Geometry.
  2663. [13]Cady Walter Guyton, Piezoelectricity, Volumes I and II, Dover, 1964,
  2664. 61KCMO Library.
  2665. [14]Cady Walter Guyton, The Piezoelectric Resonator, In: Physical
  2666. Acoustics, R. Bruce Lindsey Editor, (Benchmark Papers In Acoustics).
  2667. [15]Clough R W, Penzien J, Dynamics Of Structures, McGraw-Hill 1972,
  2668. AlliedSignal Library, (Rayleigh Damping, Piezoelectricity.).
  2669. [16]Cracknell A P, Ultrasonics, Wykeham Publications, 1980 AlliedSignal
  2670. Library.
  2671. [17]Crandall B C, Lewis James, Editors, Nanotechnology, Article: John
  2672. Foster, p17, Scanning Tunneling Microscope (STM), (Uses Piezoelectric Control,), 1992, MIT Press.
  2673. [18]Cullity, Elements Of X-Ray Diffraction, Addison-Wesley, 1956.
  2674. [19]Cummings James R, Predicting The Effect Of Thickness Of Piezoelectric Plates On The Performance Of The Ultrasonic Traveling
  2675. Wave Motor, U. Mo. (Rolla,), May 1993.
  2676. [20]Cummings James R, Stutts Daniel S, Dharani L R, Effects Of Material And Geometric Characteristics On The Performance Of A
  2677. Traveling-wave Motor, U. MO. Rolla Report, 11-9-93.
  2678. [21]Cummings Robert James, Analysis Of The Performance And Contact Behavior Of The Piezoelectric Traveling-wave Motor, Masters
  2679. Theses, University Of Missouri-Rolla MRTC Manufacturing Research And
  2680. Training Center, 1994.
  2681. [22]Emery James D, Elasticity, Unpublished Document.
  2682. [23]Emery James D, Electomagnetic Theory, Unpublished Document.
  2683. [24]Emery James D, Transducer Equivalent Circuits, Unpublished Document.
  2684. [25]Emery James D, Piezo Notes I, Unpublished Document.
  2685. [26]Emery James D, Piezo Notes II, Unpublished Document.
  2686. [27]Flynn Anita, Torque Production In Ultrasonic Motors, MIT Arti-
  2687. 62ficial Intelligence Laboratory, January 9, 1994, (Piezoelectric Motor.).
  2688. [28]Flynn Anita M, Piezoelectric Ultrasonic Micromotors, PhD Thesis,
  2689. MIT, June 1995.
  2690. [29]Fulton Langdon H, Techniques And Applications Of The Gas Squeeze
  2691. Film Bearing, Masters Thesis, Moore School, U. Pennsylvania, Dec 1967,
  2692. (Piezoelectric Application. Now At Martin-Marietta Communications Systems, Camden NJ).
  2693. [30]Gooberman G L, Ultrasonics, 1968, Acoustic Impedance, Transmission,
  2694. Lines, Transducers, Equivilent Circuit As Transmission Line, Q Of Transducer.
  2695. [31]Goree, Pagano-Goree Free Edge Stress, (Discussion, Goree: Singular
  2696. Elements In Abaqus Are Needed, Disagreement With Whitney.).
  2697. [32]Hagedorn P, Wallashek J, Traveling Wave Ultrasonic Motors, Part
  2698. I: Working Principle And The Mathematical Modeling Of The Stator, J. Of Sound And Vibration, V. 155, No. 1, pp 31-46, 1992.
  2699. [33]Hagood N, Chung W,Von Flotow A, Modeling Of Piezoelectric Actuator Dynamics For Active Structural Control, J. Intell.  Mat.  Syst.
  2700. And Structures, V. 1, pp327-354, July 1990, (Hamilton’s Principal Modified
  2701. For General Electromechanical Systems.).
  2702. [34]Hagood Nesbit, Mcfarland Andrew, Modeling Of A Piezoelectric Rotary Ultrasonic Motor, IEEE Trans. Ultrasonics Ferroelectrics And Frequency Control, V. 42, No. 2, March 1995, Nesbit was Anita Flynn Collegue
  2703. at MIT. Rayleigh-Ritz Method, which includes, Electrical Energy.
  2704. [35]Hauptman, Herbert, Crystal Structure Determination, Linda Hall,
  2705. QD911.h33, 1972, Mathematical Biophysics Department, Medical Foundation Of Buffalo, Cosine Semiinvariants.
  2706. [36]Heising Raymond A, Quartz Crystals For Electrical Circuits: Their
  2707. Design And Manufacture, Van Nostrand, 1946, Reprinted by Electronic
  2708. Industries Association, 2001 Eye St, NW, Washington DC 20006, 1978, 1982,
  2709. (Piezoelectric Equivalent Circuits.).
  2710. [37]Hirose, Takahashi, Uchino, Aoyagi, Tomakawa, Electromechanical Prop-
  2711. 63erties Of PbZro3-pbzrtio3-pb(mn(1/3)sb(2/3)o3 Ceramics Under
  2712. Vibration Level Change, Mat. Res. Soc. Symp. Proc., V. 360, 1995,
  2713. Materials Research Society.
  2714. [38]Hirose, Takahashi, Uchino, Aoyagi, Tomakawa, Measuring Methods
  2715. For High-Power Characteristics Of Piezoelectric Materials, Mat.
  2716. Res. Soc. Symp. Proc., V. 360, 1995, Materials Research Society.
  2717. [39]Hossack John A, Hayward Gordon, Finite-Element Analysis of 1-3
  2718. Composite Transducers, IEEE Transactions on Ultrasonics, Ferroelectrics,
  2719. and Frequency Control, V. 38, N0. 6, November 1991, (Uses ANSYS.).
  2720. [40]Inman Daniel, Engineering Vibration, MatLab Disk, 1994, Chapter:
  2721. Experimental Modal Analysis.
  2722. [41]Institute of Radio Engineers, IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric
  2723. Constants, The Electromechanical Coupling Factor, 1958, Proc. IRE,
  2724. V. 46, pp764-78.
  2725. [42]Jaffe Bernard, Cook William, Jaffe Hans, Piezoelectric Ceramics, Academic Press, 1971, Linda Hall, TK7871.15.C4 J3, Definitions, Symmetry,
  2726. Constants, Measurements, Hysteresis.
  2727. [43]Johnson K L, Contact Mechanics, Linda Hall Library.
  2728. [44]Jones, Acoustic And Electromagnetic Waves, Oxford.
  2729. [45]Kagawa, Yamabuchi, Finite Element Simulation of a Composite
  2730. Piezoelectric Transducer, IEEE Transactions on Sonics and, Ultrasonics,
  2731. V. SU-26, No. 2 march 1979, (ANSYS example VM176.).
  2732. [46]Kikuchi And Oden, Contact Problems In Elasticity: A Study Of
  2733. Variational Inequalities And Finite Element Methods, Linda Hall,
  2734. QA931.k47 1988, (SIAM), Society For Industrial And Applied Mathematics.
  2735. [47]Kittle, Solid State Physics, (Piezoelectric Equations.).
  2736. [48]Koehler D R, Radial Vibration Modes In Thin Plates Of BaT iO3
  2737. And LiNBO3, Memo, Sandia National Laboratory, October 16, 1989.
  2738. 64[49]Koiter W T , Miknailor G K, Theory Of Shells.
  2739. [50]Kolsky, Stress Waves In Solids, Dover.
  2740. [51]Kompaneyts A S, Theoretical Physics, Dover, 1961.
  2741. [52]Lass Victor, Vector And Tensor Analysis, (Relation Between Mechanical, Electric, And Magnetic Energy.).
  2742. [53]Lazan B J, Damping Of Materials And Members In Structural
  2743. Mechanics, Oxford 1968.
  2744. [54]Lerch, R, Simulation Of Piezoelectric Devices By Two And Three
  2745. Dimensional Finite Elements, IEEE Trans. On Ultrasonics Ferroelectrics
  2746. And Freq. Control, V. 37, No. 2, May 1990.
  2747. [55]Levich B G, Theoretical Physics, Volumes I, Ii, Iii, Wiley-Interscience
  2748. 1971.
  2749. [56]Lur’e A L, Three-dimensional Problems Of Elasticity, (Basis Of
  2750. James Cummings Rolla Analysis Of Tooth Contact In Piezo Motor).
  2751. [57]Mansfield, E H, The Bending And Stretching Of Plates, (The Small
  2752. Deflection Theory Of Plates Is Analogous To Beam Small, Deflection Theory. Gaussian And Mean Curvature, Where Curvature Is Taken To, Be
  2753. Approximated By The 2nd Order Derivatives. Twist Is The Cross Derivative, Transformation Matrix For Curvatures Handled As In JRC (above).
  2754. [58]Marsden Jerrold, The Mathematical Theory Of Elasticity, (Contains Much Differential Geometry).
  2755. [59]Martin, Transformation Geometry, (Symmetry Groups, Transformations).
  2756. [60]Mason Warren P, Piezoelectric Crystals and Their Application to
  2757. Ultrasonics, Van Nostrand, 1950.
  2758. [61]Mason Warren P, Physical Acoustics, 1964 Academic, AlliedSignal Library, QC225.m3, (Piezoelectric Actuators.).
  2759. [62]Mcfarland, Smith, Bernhart, Analysis Of Plates, Linda Hall Library.
  2760. 65[63]McLachlan N W, Theory Of Vibrations, Circular Membrane, Circular
  2761. Plate, Bessel Functions p 129-144.
  2762. [64]Meirovitch Leonard, Elements Of Vibration Anlysis, Mcgraw-Hill,
  2763. 1975.
  2764. [65]Meirovitch, Leonard, Analytical Methods Of Vibration, Vibration
  2765. Of Plates p 179, Eigenvalues, Rayleigh Quotient, The Biharmonic Equation.
  2766. [66]Mentesana C P, Optical Stronglink Development And Piezoelectric Motor Evaluation, AlliedSignal KCD, Kcp-613-4573, May 1992.
  2767. [67]Mercer C D, Reddy B D, Eve R A, Finite Element Method For Piezoelectric Media, UCT/CSIR Applied Mechanics Research Unit, Technical
  2768. Report No. 92, April, 1987.
  2769. [68]Merhaut Josef, Theory Of Electroacoustics, 1976, Czech Book, Johnson County Library, (Piezoelectric Transducers.).
  2770. [69]Mikhlin, S.g, Variational Methods In Mathematical Physics, Linda
  2771. Hall Library, 1964.
  2772. [70]Mizushima Masataka, Theoretical Physics, John Wiley, 1972, AlliedSignal, (From Classical Mechanics To General Relativity, Relativistic Quantum Mechanics And Group Theory.).
  2773. [71]Moore And Christopher Davis And Coplan, Building Scientific Apparatus, (Experimental Techniques.).
  2774. [72]Morgan Matroc Incorporated, Guide To Modern Piezoelectric Ceramics, Catalog, Vernitron Division.
  2775. [73]Morse, Philip M, Vibration And Sound.
  2776. [74]Musikant Solomon, What Every Engineer Should Know About Ceramics, 1991, Marcel Dekker, AlliedSignal Book.
  2777. [75]Newnham R E, Trolier-McKinstry S, Giniewicz J R, Piezoelectric, Pyroelectric And Ferroic Crystals, J. Material Education, 15, pp 189-223
  2778. (1993), (Reprint: Penn State MRL Annual Report To ONR 1994, Appendix
  2779. 661).
  2780. [76]Nye J F, Physical Properties Of Crystals, QD931 .N8, 1957, 1987.
  2781. [77]Ostergard D, Pawlak T, Three-Dimensional Finite Elements For
  2782. Analyzing Piezoelectric Structures, Proceedings IEEE Ultrasonics Symp.,
  2783. Williamsburg, Va, 1986, pp 639-642.
  2784. [78]Paganno N J, Pipes R B, Interlaminar Stresses In Composite Laminates Under Uniform Axial Extension, Journal Of Composite Materials, V. 4, 1970, pp 538-548.
  2785. [79]Paganno N J, Pipes R B, The Influence Of Stacking Sequence On
  2786. Laminate Strength, Journal Of Composite Materials, V. 5, 1971, pp 50-57.
  2787. [80]Panasonic, Ultrasonic Motor, Panasonic Electric Motor Division, Matsushita Electric Industrial Co. Ltd., (Equivalent Circuit.).
  2788. [81]Parker Sybyl, Solid State Physics Sourcebook.
  2789. [82]Press, Flannery, Teukolsky, Numerical Recipes in Fortran, (Subroutines For Computing Bessel Functions.).
  2790. [83]Pressly Robert B, Mentesana Charles P, Piezoelectric Motor Development At AlliedSignal Kansas City Division, KCP-613-5515, November, 1994.
  2791. [84]Puppo A. H. Evenson H A, Journal Of Composite Materials, V. 4,
  2792. 1970, pp 201-214.
  2793. [85]Raju P. Narayana, Vibration Of Annular Plates, Journal Of The
  2794. Aeronautical Society Of India, V. 14, No. 2, May, 1962, (Boundary Conditions For Maple Motor Code).
  2795. [86]Ramachandran G N , Srinivasan R, Fourier Methods In Crystallography, Linda Hall Library, 1970.
  2796. [87]Rayleigh Lord, The Theory Of Sound, Volumes I and II, Dover, (Vibrations Of Plates: Chapter 10, p 352, Origin of Rayleigh Damping Concept).
  2797. 67[88]Roiguiskis, Bansevicius, Barauskas, Kulviets, Vibromotors For Precision Microrobots, AlliedSignal Library, (Many Kinds Of Piezoelectric
  2798. Motor Designs.).
  2799. [89]Saigoh Hiroaki, Kawasaki Mayumi, Maruko Nobuhiro, Kanayama Kouichi,
  2800. Multilayer Piezoelectric Motor Using The First Longitudinal And
  2801. Second Bending Vibrations, Japanese J Applied Physics, V. 34, 1995,
  2802. pp2760-2764.
  2803. [90]Sands Donald E, Introduction To Crystallography, 1975, Dover.
  2804. [91]Sashida Toshiiku, Kenjo Takashi, An Introduction To Ultrasonic
  2805. Motors, Oxford U. Press 1993, Piezoelectricity.
  2806. [92]Sawyer C B, Tower C H, Phys. Rev. 35, (1930) pp269-73, (Technique For Displaying Ferroelectric-Piezoelectric Hysteresis Curves.).
  2807. [93]Sherrit S, Gauther N, Wiederick H D, Mukherjee B K, Accurate Evaluation Of The Real And Imaginary Material Constants For A Piezoelectric Resonator In The Radial Mode, Ferroelectrics, 1991, V. 119,
  2808. pp17-32.
  2809. [94]Shields John Potter, Basic Piezoelectricity, 1966, Sams, QC595 .S4,
  2810. Linda Hall Library.
  2811. [95]Smits Jan G, Iterative Method For The Accurate Determination
  2812. Of The Real And Imaginary Parts Of The Materials Coefficients
  2813. Of Piezoelectric Ceramics, Trans. Sonics Ultraacoustics. V. Su-23, No.
  2814. 6, Nov. 1976, pp393-402.
  2815. [96]Soedel Werner, Vibrations Of Shells And Plates, 1981. Second Edition 1993, University Illinois At Chicago.
  2816. [97]Sokolnikoff I S, Mathematical Theory Of Elasticity, 1956, (Biharmonic Equation p77, Two Dimensional Problems Ch. 5, Finite Differences,
  2817. Relaxation Methods, pp442-454.).
  2818. [98]Southwell R V, Theory Of Elasticity.
  2819. [99]Stoker, Nonlinear Vibrations.
  2820. 68[100]Stutts Daniel, Loss Factors, FAX: Feb 23, 1996, Various Materials
  2821. Loss Coeficients vs Young Modulus, Comparison Of Damping for a Variety
  2822. of Metals, Magnetoeleastic Damping In Ferromagnetic Metals, Internal Friction Vs Strain Amplitude, Experimental Setup With Pucot Drive Crystal
  2823. And Specimin.).
  2824. [101]Stutts Daniel, Modal Analysis Of The Free-Free Rod With Damping, FAX: April, 9 1996, (See Piezo96 Notebook.).
  2825. [102]Stutts Daniel, A Simple Example Of The Relationship Between
  2826. Electromechanical Coupling And Measured Impedance, Unpublished
  2827. Document, University of Missouri at Rolla, Mechanical Engineering Department, March 1, 1995.
  2828. [103]Stutts Daniel, The Free-free Annular Plate, Maple Program And
  2829. Document, U. Mo. Rolla Mech. Eng. Dept, January,1994.
  2830. [104]Stutts Daniel S, Friend James R (Formerly Cummings), Quarterly Report: Piezoelectric Motor Project, Oct. 2 1995 (tooth Motion, Asymmetry, Maple Conference, Contact Mech, Web Page).
  2831. [105]Takahashi Sadayuki, Herose Seiji, Uchino Kenji, Oh Ki-Young, Electromechanical Characteristics Of Lead-Zirconate-Titanate Ceramics
  2832. Under Vibration Level Change, 1995 IEEE.
  2833. [106]Takuro Ikeda, Fundamentals Of Piezoelectricity,, (Electromechanical Coupling Coefficient, X-cut, Y-cut Plate, Equivalent Circuit. p84.).
  2834. [107]Termin, Radio Engineering, (Equivalent Circuit Of Piezo Oscillator).
  2835. [108]Tiersten H F, Linear Piezoelectric Plate Vibration, Plenum Press,
  2836. 1969, pp33-99, (Fundamental Equations And Equivalent Circuit.).
  2837. [109]Timoshenko And Goodier, Theory Of Elasticity, Third Edition.
  2838. [110]Timoshenko, And Woinowsky-Krieger, Theory Of Plates And Shells,
  2839. 2nd Ed.
  2840. [111]Tomikawa Y, Ueha S, Ultrasonic Motors: Theory And Application, Oxford 1993.
  2841. 69[112]Tuinenga Paul, Spice, A Guide To Circuit Simulation And Analysis Using Pspice.
  2842. [113]Tzou H S, Piezoelectric Shells, Kluwer Academic Publishers, 1993.
  2843. [114]Urick Robert J, Principles Of Underwater Sound, 2nd Ed., McGrawHill, 1975, (Piezoelectric Transducers.).
  2844. [115]Van Randeraat J, Setterington R E, Piezoelectric Ceramics, London,
  2845. Mullard, Linda Hall Library, 1974.
  2846. [116]Voyiadjis, Karamanlidis, Editors, Advances In The Theory Of Plates
  2847. And Shells, Linda Hall Library.
  2848. [117]Wallashek Jorg, Piezoelectric Ultrasonic Motors, Conference On
  2849. Mechatronics And Robotics, Duisburg/Moers, Germany, Sept 27-29, 1993
  2850. pp107-125.
  2851. [118]Webb S, The Physics Of Medical Imaging, 1988, Ultrasound, NMR,
  2852. CT, Tomography.
  2853. [119]Weinberger, Hans, Partial Differential Equations, (Sturm-Liouville
  2854. Problems, pp182-187, Circular Membrane, Bessel Functions.).
  2855. [120]Weinberger, H F, Variational Methods In Boundary Value Problems, 1961.
  2856. [121]Wert, Thomson, Physics Of Solids.
  2857. [122]Whitney J M, Browning C E, Journal Of Composite Materials, V.
  2858. 6, April 1972, pp 50-57.
  2859. [123]Whitney J M, Stansbarger D L, Howell H B, Journal Of Composite
  2860. Materials, V. 5, April 1971, pp24-34.
  2861. [124]Whitney James M, Structural Analysis Of Laminated Isotropic
  2862. Plates, 1987, Technomic, (Includes Lampcal Software.).
  2863. [125]Whitney, Pipes, Experimental Mechanics Of Fiber Reinforced
  2864. Composite Materials, 1982, T-C Publishers.
  2865. [126]Willmore, T J, Tensors As Tensor Products, Linda Hall Library,
  2866. 701959.
  2867. [127]Woolett Ralph S, Theory Of Piezoelectric Flexural Disk Transducers With Applications To Underwater Sound, USL Report No.
  2868. 490, U. S. Navy Underwater Sound Laboratory, Fort Trumbull, New London
  2869. Conn, 1960, S-F001 03 04-1.
  2870. [128]Wooster, W A, Breton A, Experimental Crystal Physics, KCMO
  2871. Library.
  2872. [129]Yang, Variational Formulation Of Piezoelectric Elements.
  2873. [130]Ziman J M, Principles Of The Theory Of Solids, Cambridge, 1964,
  2874. (Second Edition 1979).
  2875. 71

Reply to "Piezoelectric Crystals"

Here you can reply to the paste above